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Calculation of winds disturbed by an array of fences
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Abstract

It is known that when an isolated porous windbreak is represented by a sink in the mean momentum equations, even the
simplest turbulence closures lead to reasonably good simulations of the mean wind close to the barrier, irrespective of whether
or not sources are introduced in the turbulent kinetic energy (TKE) and dissipation rate (ε) equations. However, unless the
barrier is considered to dissipate TKE in addition to opposing the mean flow, the pattern of turbulence is poorly simulated.

Here we examine the performance of simple Reynolds-averaged Navier–Stokes (RANS) wind models for the case of a
windbreaknetwork, relative to the field experiment of McAneney and Judd (15 porous fences, heighth = 2 m, spaced at
Dx/h = 6 along the mean wind).All closures we considered gave mediocre predictions even for the mean flow, contrasting
with the case of an isolated barrier; while, just as for the isolated barrier, prediction of the TKE in a windbreak network hinges
on ambiguous choices in the treatment of TKE (andε) sources at the barriers.

The additional turbulence generated by a sequence of barriers implies that a proper representation of the Reynolds stress is
more critical than in the case of an isolated barrier, near which the pressure-gradient force dominates. This surely accentuates
the importance of the turbulence closure, and our resultsmay imply that no existing RANS turbulence closure is adequate for
this type of flow. However, the problem could alternatively stem from the treatment of sinks parameterising the flow–fence
interaction, not only in the TKE andε-equations (where perforce such terms are heuristic), but even in the momentum
equations.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In some regions of the world, for example, parts of
New Zealand and France, arrays of windbreaks are
vital in specialized agriculture and horticulture. For
almost a century, and perhaps even longer, the scien-
tific study of windbreaks has been motivated by the
search for the most effective types of and usages of
windbreaks, for a diverse range of benefits including
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reduced soil erosion, higher canopy temperatures, or
reduced fruit motion. Early work is reviewed byvan
Eimern et al. (1964), and a more up-to-date survey is
given byBrandle et al. (1988).

Wind and micro-climate models express in the most
general way our understanding of disturbed flows,
for in principle all particular cases lie within their
compass. Standard turbulence models have proven
able to simulate quite well the mean flow and (not so
unambiguously) the turbulent kinetic energy (TKE)
about a long,isolated, porous windbreak standing on
flat ground (Wilson, 1985; Wang and Takle, 1995;
Packwood, 2000; Wilson et al., 2001). But this article
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will present evidence that may imply the aerody-
namics of multiple porous barriers eludes existing
(Reynolds-averaged Navier–Stokes (RANS)) models.

Early attempts to extract a general understanding
of the principal aerodynamic effects of windbreaks
were empirical, field and wind tunnel experiments
contributing many valuable qualitative insights. In
parallel with the experimental work, some scientists
treated the windbreak as a problem in turbulent fluid
mechanics, and appropriately so, for an isolated wind-
break constitutes one of the canonical disturbances
of an ideal atmospheric surface layer (others being
the step change in surface roughnessz0, and the step
change in surface energy-flux densitiesQ∗,QH,QE).

As early examples, bothTani (1958)and Kaiser
(1959) correctly treated a windbreak as a source of
mean velocity-deficit	ū, but they treated	ū as a
passive scalar. This means that the spatial distribution
of 	ū was controlled by turbulent diffusion along the
vertical, and advection by the approach flowū0(z),
i.e. terms that are non-linear in the velocity distur-
bance were ignored. These treatments also missed the
essential influence of the pressure field, which is re-
sponsible for the displacement of the location of min-
imum mean velocity downwind from the windbreak.
Continuing experiments, steadily improving in their
fidelity (e.g.Raine and Stevenson, 1977), emphasized
the deficiencies of the early numerical treatments,
although perhaps the theoretical studies helped make
experimentalists more aware of the requirements for
similitude, and the value of giving anaerodynamic
characterization of the windbreak itself, rather than
previous qualitative, visual descriptions (‘very dense’,
‘permeable’, or ‘thin from top to bottom’).

With growing accessibility of computing power,
and the incursion of numerical fluid mechanics into
micro-meteorology, e.g.Taylor’s (1970)early treat-
ment of local advection over surface temperature
changes, came more plausible simulations of wind-
break flows, using RANS models. Using thek–ε clo-
sure,Durst and Rasogi (1980)calculated the effects
of a solid barrier, requiring that mean velocity vanish
at the barrier. Also using thek–ε closure,Hagen et al.
(1981) treated aporous fence, by imposing a mea-
sured mean velocity profile in the immediate wake of
the fence.

Wilson (1985)reverted to the representation of a
porous barrier as a momentum sink, involving the

(easily measurable) resistance coefficient (kr) of the
material, and showed that good predictions of the
mean wind field near anisolated windbreak could be
obtained. This was the case irrespective of the com-
plexity of the turbulence closure, presumably due to
the dominating influence of the pressure gradient near
the fence. However, further downwind, where the pres-
sure gradient has relaxed and is less important than the
turbulent shear stress, these simulations, regardless of
closure, slightly underestimated the rate of recovery
of the wind: thusWilson (1985)concluded that ‘one
could not with confidence simulate the more complex
problem of a windbreak network’.

Nevertheless similar calculations byWang and
Takle (1995)did not manifest this problem.Wilson
and Mooney (1997)sought to discover why not, and
thought the better performance of Wang and Takle’s
model may have been ascribable to a too-shallow
computational domain. However, it is probably a fruit-
less distraction to focus unduly on small differences
between simulations, especially when observations
themselves are scarce and carry their own uncertainty.

The question posed here is this: may we say that
today’s RANS models satisfactorily describe the wind
in anarray of windbreaks? In what follows a tentative
answer will be given, from a comparison of simula-
tions of the wind in an array of fences with the corre-
sponding observations ofMcAneney and Judd (1991).

2. Experiments on arrays of windbreaks

In view of the practical importance of windbreak
arrays, the paucity of experimental data relating
specifically to their aerodynamic performance is sur-
prising.van Eimern et al. (1964)noted that ‘systematic
experiments for this problem demand numerous paral-
lel belts of the same kind on an even, uniform ground,
which has so far only been possible in the wind tun-
nel and at small belts’. They questioned ‘whether the
results gained with a single belt are applicable, and
which is the best interval for the belts’ and observed
that ‘a simple application of the results gained before
cannot be enough, because a system of several belts
alters the roughness of the land. . . An extensive
system of wind protection leads to a new equilibrium
of the flow owing to the greater roughness of the
surface’.
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Seguin and Gignoux (1974)nicely brought out this
latter point in a comparison of the mean wind profile
(at z ≤ 12 m) observed downwind of a succession of
hedges (heighth = 8 m) spaced at intervalsDx/h =
4–5, against the corresponding profile amid a large
open area (airport). They showed that in the lee of the
hedges the neutral wind profile displayed a ‘kink’, de-
marcating an inner region (or internal boundary layer
(IBL)) from an outer region. The inner region was
characterized by a small roughness length and a local
friction velocity u′∗ that wasreduced relative to the
reference valueu∗ at the airport. However, the mean
velocities above the inner region implied an apparent
roughness length that was large (of orderh/10), and
a friction velocityu′′∗ exceeding the reference value.
Iqbal et al. (1977)systematically studied the rough-
ness and displacement lengths of the equilibrium
wind profile developed by a series of equi-spaced,
non-porous barriers in a naturally-developed wall
shear layer within a wind tunnel. Varying the wind-
break spacingDx/h from 1 to 20, they determined
that maximum roughness occurs withDx/h = 3.

Judd et al. (1996)carried out a wind tunnel simula-
tion of the flow through porous windbreaks standing
in a model plant canopy1 (h/hc ≈ 3, wherehc is
crop height), the barriers being spaced at intervals of
Dx/h = 6 or 12. In the caseDx/h = 6, the array con-
sisted of a total of seven windbreaks, three upwind and
three downwind from the central break, about which
measurements were focused. According to Judd et al.,
the upstream members of an array of windbreaks may
be considered as ‘an additional upstream roughness’
having two main consequences: ‘an overall decrease in
windspeed. . . due to upwind (windbreaks)’; and ‘an
increase in ambient turbulence leading to a decrease
in the shelter efficiency of any one break in a multiple
array relative to an equivalent single break’. These
findings are consistent with earlier studies of wind-
break arrays, the increased levels of turbulence having

1 Patton et al. (1998)reported an LES study of this experiment,
approximating the repeated windbreaks by assuming flow through a
single fence in a domain terminated by periodic along-wind bound-
ary conditions. Patton et al. concluded that ‘mean fields from the
numerical and physical simulations show striking resemblances’,
but that velocity variances were not simulated quite so well. Thus,
LES, though computationally far more demanding than RANS,
does provisionally appear promising for the calculation of dis-
turbed flows.

been noted byWoodruff and Zingg (1955), who in the
context of their wide-ranging interest in wind erosion,
reported mean windspeed and turbulence intensity
within a flow domain defined by four consecutive
porous fences (field and wind tunnel observations).

From their study, Judd et al. concluded that the
‘non-local’ shelter afforded by an array as a whole
dominates the reduced effectiveness of anyone of its
members due to enhanced turbulence (which causes
faster recovery of the velocity in the wake of anyone
member of the array), observing ‘windspeeds within
a multiple array that are smaller than those behind a
single windbreak, given identical external conditions’.
However, the increased turbulence is a serious lim-
itation to the use of shelterbelts for some purposes,
and particularly in the context of plant or fruit
movement.

McAneney and Judd (1991)measured mean wind
(using cup anemometers) and turbulence (using a
one-dimensional sonic anemometer) in their unique
field study of the windflow about a series of 15 very
long, parallel fences (their ‘aeolian array’). The site
was flat and unobstructed (roughness lengthz0 =
0.007 m, displacement heightd = 0.045 m), and data
were selected for near-neutral stratification, with the
mean wind direction within 10◦ of normal to the
fences. The fences were composed of a porous, plastic
windbreak cloth, had heighth = 2 m (h/z0 = 290),
and were spaced along-wind at intervalsDx/h = 6.
McAneney and Judd concluded with the observation
that ‘in a practical sense, the data clearly demon-
strate the difficulty of simultaneously reducing both
mean windspeeds and turbulence at crop levels us-
ing repeated windbreaks at conventional horticultural
spacings’.

The above survey covers virtually all existing
observations useful in judging models and theories
of micro-meteorological flow in an array of porous
barriers. Of these, the data of McAneney and Judd
have been chosen as a criterion for the simulations
to follow. This is because the wind tunnel study of
Judd et al. (1996)is more complex, due to having
included a plant canopy, and more especially because
of other uncertainties that would have arisen in at-
tempting a simulation, e.g. due to the fact that some
members of the windbreak array actually stood, not
in the canopy, but in the inflow (metal tombstones) or
outflow (gravel) regions of the flow.
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3. Governing equations for numerical simulations
of winds in an array of fences

Because this paper hopes to draw a general infer-
ence on the capability of micro-meteorological mod-
els for highly disturbed flows, it is necessary that the
models investigated should include representative clo-
sures that span the range available, i.e. several variants
of eddy viscosity closures, as well as stress closures.

As will become clear, primarily we parameterize
the interaction of the wind with a fence (or fences) by
means of a sink in the momentum equations. But while
there is some evidence that this step is satisfactory, the
corresponding sources and sinks that (could) appear in
the various supporting equations (such as equations for
the TKE and TKE dissipation rateε, if required by the
closure) are much less certain. It is known, however,
that these choices are crucial: without a TKE sink,
for example, simulations do not produce the region
of reduced turbulence in the lee of a porous fence
(Wilson, 1985; Packwood, 2000).

3.1. Symmetries, assumptions and the key variables

We letx denote a coordinate aligned with the mean
wind, and let the windbreak(s) be infinitely long and
aligned cross-wind, i.e. along the cross-wind (y) di-
rection. Assume the surface layer approaching the
windbreak(s) is neutrally-stratified, and that the wind
flow is stationary, i.e.statistics of the wind are invari-
ant in time. The statistical properties which stand for
‘knowledge’ of the wind include the mean velocity
components̄u = ū(x, z), w̄ = w̄(x, z), and statistics
of the turbulent fluctuations relative to these means,
i.e. the vertical flux of momentumu′w′ and the turbu-
lent velocity variances (u′2, etc.), whose sum gives the
turbulent kinetic energyk = (1/2)(u′2 + v′2 + w′2).
Governing equations for the state variables are derived
by Reynolds-averaging the Navier–Stokes equations.

3.2. Mean momentum equations and momentum sinks

The governing equation for̄u is:

∂

∂x

(
ū2 + u′2 + p̄

)
+ ∂

∂z
(ūw̄ + u′w′) = Sū, (1)

wherep̄ is the disturbance in mean kinematic pressure,
generated by the interaction of the wind with obstacles.

The LHS is simply the divergence of the mean flux
(
−→
Fu) of u-momentum, and soEq. (1)could be written

symbolically as:

∂ū

∂t
= 0 = −∇ · −→

Fu + Sū. (2)

In reference to a small cube of airspace, the term∇·−→Fu
measures thenet rate of transport ofū-momentum
across the walls, whileSū represents production or
destruction of momentum inside the cube. In the
present case the momentum sinkSū represents the
drag of theN fences, and may be parameterized
as:

Sū = −krū
√
ū2 + w̄2 s(z− h)

N∑
k=1

δ(x − xfk), (3)

wherekr is the (dimensionless) resistance coefficient
of the fence(s),s(z − h) is a dimensionless step
function (1 for z ≤ h and 0 for z > h) and the
delta-functions specify thex-wise locations (xfk) of
fences, numberedk = 1, . . . , N . A corresponding
sink is included in thew̄-momentum equation, but its
effect has been found to be negligible, whether in the
case of a single fence or an array.

From Eq. (1) it is obvious that the velocity fluc-
tuations impact the mean velocitȳuj through the

Reynolds stressu′
iu

′
j , but turbulence also impacts

the mean velocity through its influence on the mean
pressure. Inmodels, the feedback of the computed tur-
bulence field on the computed mean velocity depends
in detail on the closure assumptions.

RANS wind simulations coupleEq. (1) with the
vertical momentum equation, the incompressible con-
tinuity equation, and a “turbulence closure” whose
role is to provide the impact of the unresolved (tur-
bulent) eddies on the mean flow. Before outlining the
closures tested here, we first consider the impact of
porous barriers on velocity fluctuations.

3.3. TKE sources arising from interaction of the
wind with a fence

If a porous barrier is treated as a momentum sink,
in lieu of imposing correct boundary conditions on
the true (complex, three-dimensional) geometry and
fully resolving the flow at the fence, an important
consequence is that there are additional turbulent
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kinetic energy sources and sinks. Firstly, the drag
forces convert kinetic energy of the mean flow (MKE)
to turbulent kinetic energy in some range of scales
of motion (‘wake scales’, WKE); and secondly the
fluctuating drag extracts energy from the eddies,
re-depositing it in the wake scales (a spectral-transfer
mechanism which acts in parallel with the normal
vortex-stretching mechanism).

In vegetation canopies wake scales of motion are
usually considered to be ‘small’, and thus rapidly
dissipated. Although it is sometimes possible to de-
tect a hump or peak in the power spectrum, reflecting
the deposition of energy into wake scales, measure-
ments reviewed bySeginer et al. (1976)led them
to regard “eddies generated by branches and leaves
as only a small perturbation on the main spectrum”
and to conclude that “only a small fraction of the
turbulence which can be observed inside natural
canopies has its origin in the wakes of individual
elements”.

Thus, for convenience in modeling such flows,
Wilson (1988)split the turbulence spectrum into two
bands (k, kw) where k is the ‘shear kinetic energy’
(SKE) andkw the ‘wake kinetic energy’ (WKE). MKE
lost to the drag forces was assumed to be re-deposited
as WKE, while the SKE→ WKE term was modeled
heuristically as:

ε = εcc + εfd

= (cek)
3/2

λ
+ 1

2
CdAū(4u′2 + 2v′2 + 2w′2), (4)

whereA is the leaf area density (m−1) and λ the
turbulence length scale. The first term represents the
conventional vortex-stretching mechanism (εcc for
‘cascade conversion’). The second term (εfd) is due
to the action of the form drag on vegetation, and was
derived by assuming that momentum sinks of form
CdA(u

2, uv, uw) appear in theinstantaneous momen-
tum equations.2 In the present context where the drag

2 Consideration that, at the fences, space is ‘multiply-connected’
will show that indeed, an extra source term must be included
(Wilson and Shaw, 1977; Wilson et al., 1990). It can be shown
that a term of this form in the instantaneous momentum equations
implies loss of energy atall scales, which is not quite realistic,
since there must be a compensating production of TKE at “wake”
scales.

is exerted by a porous fence rather than a continuum
of vegetation, we may substitutekrs(z − h)δ(x − xf )

for the CdA product, postponing consideration of
whether “wake scales” of motion actually are unim-
portant, and whether spectral division is appropriate.
Then the corresponding SKE sinks in the individual
variance-budget equations would be (omitting the
localising functions):

εxx = 4krūu′2 + 2
3εcc,

εyy = 2krūv′2 + 2
3εcc,

εzz = 2krūw′2 + 2
3εcc.

(5)

Wilson’s treatment of the stress tensor departed
from theLaunder et al. (1975; LRR)closure it derived
from, in several respects. Normal components of the
stress tensor were considered as representing the SKE
band (only); canopy sinks were included, and a clo-
sure coefficient was arbitrarily modified. The usual
εcc-equation was not carried,εcc being parameterized
directly using the equilibrium form shown above; of
course the closure then relied on an imposed length
scale.

Ayotte et al. (1998; AFR)gave a turbulence clo-
sure for plant canopies differing in several respects3

from that of Wilson (1988), and we have performed
some calculations in line with their scheme. As with
Wilson’s closure the dissipation rate is split into two
terms, but to prescribeεcc AFR retain (and merely
modify) the usualε-equation.

To estimate the instantaneous drag forces, AFR
replaced Wilson’s projections(uu, uv, uw) with
the rigorous form(u|�u|, v|�u|, w|�u|), where |�u| ≡
(uiui)

1/2 is the magnitude of the instantaneous ve-
locity vector �u. Then the instantaneous drag terms
are:

Sui = −krui [ujuj ]
1/2s(z− h)

N∑
k=1

δ(x − xfk). (6)

To facilitate ensemble-averaging, one may ‘linearize’
the non-linear portion of the instantaneous drag term

3 Refined treatment of drag forces; inclusion of LRRε-equation;
closure reduces to standard LRR second-order closure, in absence
of vegetation.



36 J.D. Wilson, E. Yee / Agricultural and Forest Meteorology 115 (2003) 31–50

as follows:

[(ūj + u′
j )(ūj + u′

j )]
1/2(ūi + u′

i )

= M

(
1 + 2

ūj u
′
j

M2
+
u′
j u

′
j

M2

)1/2

(ūi + u′
i )

≈ M

(
1 +

ūj u
′
j

M2

)
(ūi + u′

i )

≈ M(ūi + u′
i )+ ūi ūj

M
u′
j , (7)

whereM ≡ (ūi ūi )
1/2 = √

ū2 + w̄2 is the magnitude
of the mean velocity vector, and we have neglected
all terms involving products of turbulent velocity fluc-
tuations of order two or greater. Then we recover a
source term:

Sūi = −krūiMs(z− h)

N∑
k=1

δ(x − xfk) (8)

in the ith mean momentum equation [cf.Eq. (3)].
Correspondingly, we retrieve a source/sink term in
the transport equation for TKE that has the following
form, assuming that the Reynolds stresses are mod-
eled using the BoussinesqK-closure (to follow):

εfd = kr

[
8

3
Mk − 2K

ūiūj

M

∂ūi

∂xj

]
s(z− h)

×
N∑
k=1

δ(x − xfk). (9)

This source/sink contribution to the TKE transport
equation is obtained by the usual manipulation.4 The
first term in the square brackets ofEq. (9) is always
positive, and hence leads to an additional mechanism
for the reduction of TKE at the barriers. However, the
second term, which depends on the mean velocities
and their gradients, has an indefinite sign and can
act either as a source or sink in the TKE transport
equation.

“Spectral division” is a heuristic approach to pa-
rameterizing turbulence in RANS models when a
form drag term (distributed mean-momentum sink)

4 First find the transport equation for the velocity fluctuationu′
i

by subtracting the mean momentum equation from the instanta-
neous momentum equation; multiply the resulting equation byu′

j ;
set i = j and sum overi; ensemble-average.

appears in the momentum equations. In the present
case of windflow about porous barriers, it is not
clear that it is appropriate to consider that MKE (and
large-scale TKE) lost to the form drag should reappear
as (unimportant) small-scale TKE, i.e. there may well
be large scales of WKE. Thus, the conceptual advan-
tage of Wilson’s two-band TKE treatment is dubious
and one might prefer to consider thatk represents
the entire spectrum of turbulent motion. In that case
an MKE → TKE source term (in its simplest guise,
krū

3) must appear in its budget equation. Furthermore
since fluctuating drag forces merely change the scale
of the turbulent eddies, it would be wrong in principle
to include the form drag sinkεfd. As far as we know,
no calculation of this type has ever captured the “quiet
zone” in the lee of a windbreak; on the contrary, such
calculations normally have the outcome that TKE in
the lee of a barrier isincreased, due to the conversion
of the MKE.

Finally, lest including a TKE sink in windbreak sim-
ulations still seems opportunistic, please note that the
application of rapid-distortion theory to the passage
of a uniform, weakly turbulent (σu/ū � 1), confined
stream through a fine mesh, as in a wind tunnel, agrees
well with observations that all three components of the
turbulence are damped(Batchelor, 1953). Of course,
the tenets of rapid-distortion theory do not apply to
the natural windbreak (high turbulence intensity, mean
shear).

3.4. First-order closures

The Boussinesq eddy viscosity (K) closure:

u′
iu

′
j = −K

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
+ 2

3
k δij, (10)

is often a useful approximation for the shearing
stresses, e.g.:

u′w′ = −K(x, z)
(
∂ū

∂z
+ ∂w̄

∂x

)
, (11)

but is less satisfactory with respect to normal stresses,
and so adjustments (that violate theij-symmetry)
are often introduced. We shall show simulations of
wind about multiple windbreaks using the following
variants of theK closure.
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3.4.1. Eddy viscosity of the approach flow (“K0”)
Wilson (1985) showed that, for a single barrier,

quite good simulations of the mean wind (less good
for the turbulence) result by setting:

K(x, z) = K0(z) = kvu∗0z, (12)

where u∗0 is the friction velocity of the approach
flow andkv is von Kármán’s constant (“K0-closure”).
Where we tested this treatment of the eddy viscosity,
we simplified the momentum equations, viz.:

∂

∂x

(
ū2 −Ka

∂ū

∂x

)
+ ∂

∂z

(
w̄ū−K0(z)

∂ū

∂z

)

= −∂p̄
∂x

+ Sū, (13)

whereKa is a small “artificial diffusivity”. The ratio-
nale for an artificial diffusivity is to emphasize that
the Boussinesq closure for thenormal stresses is un-
realistic; sinceKa is small, in effect the normal stress
gradients are neglected in this treatment.

3.4.2. One-equation closure: imposed length scale
(“Kk”)

As what they regarded as the “simplest turbulence
closure that will adequately describe changes to the
mean wind field, particularly very close to ground, in
flow over hilly, forested terrain”,Wilson et al. (1998;
WFR) explored the classical first-order closure:

K(x, z) = λ(cek)
1/2, (14)

wherek is the turbulent kinetic energy, calculated from
its simplified governing differential equation, andλ =
λ(x, z) is an algebraic length scale. With the simplest
formula forλ capable of reproducing the flow structure
in and above the canopy, this closure performed as
well or better than earlier, more complex closures for
flow over a ridge, and was later applied byWilson and
Flesch (1999)to interpret measured wind variations
in a periodic series of forest clearings (see alsoPinard
and Wilson, 2001).

WFR chose theK ∝ λk1/2 closure “to avoid com-
plicated turbulence schemes, however popular, whose
basis is especially weak in the case of a canopy flow
(e.g. theε-equation)”. For the same reasons, we here
test this closure for the flow through a sequence of
porous barriers, setting:

λ = kvz. (15)

(Any number of heuristic adjustments ofλ could have
been tried.)

For calculations testing this formulation of the eddy
viscosity, we usedEq. (13), and the analogous form
for a w̄-equation; the associated TKE equation was:

∂

∂x

(
ūk −Ka

∂k

∂x

)
+ ∂

∂z

(
w̄k − K

σk

∂k

∂z

)

= K

(
∂ū

∂z
+ ∂w̄

∂x

)2

− ε, (16)

whereKa is the “artificial diffusivity” andσk is the
ratio of the eddy viscosity to the transport coefficient
for TKE. The computed TKE field feeds back on the
computed mean velocity field only through its impact
on the “true” eddy viscosity applied to calculate the
shear stress.

We have split the TKE dissipation rate5 as:

ε = εcc + εfd, (17)

and parameterizedεcc conventionally as:

εcc = (cek)
3/2

λ
. (18)

In conjunction with thisKk closure, rather than use
Eq. (9) we specified the TKE sink due to form drag
by the simpler prescription:

εfd = α kr ū k s(z− h)

N∑
k=1

δ(x − xfk), (19)

whereα is a constant of order 1(Wilson, 1985). Note
that where using this closure we consider thatk ex-
cludes wake-scale TKE, and so we do not include
MKE → TKE conversion.

3.4.3. Two-equation closures: standard k–ε model
and variants

By far the most popular two-equation closure is the
k–ε model in which model transport equations are
solved for the TKE (k) and the viscous dissipation
rate (ε) from which can be formed a turbulence length
scaleλ = k3/2/ε and an eddy viscosity:

K(x, z) = Cµ
k2

ε
, (20)

5 Whereas WFR setε = max [εcc, εfd]. The distinction is incon-
sequential.



38 J.D. Wilson, E. Yee / Agricultural and Forest Meteorology 115 (2003) 31–50

whereCµ is one of five model constants. In this paper,
the k–ε model will be used within a linear eddy vis-
cosity framework, i.e. used with the Boussinesq linear
constitutive relationship between stress and strain6 as
expressed inEq. (10), and without simplification of
the mean momentum equations, in contrast with the
previously-describedK0 andKk closures. Please note
too that in our calculationsεcc always substitutes for
ε in the definition of the eddy viscosity, except where
otherwise stated.

The TKE is determined from:

∂

∂x

(
ūk − K

σk

∂k

∂x

)
+ ∂

∂z

(
w̄k − K

σk

∂k

∂z

)
= Pk − ε,

(21)

andε from:

∂

∂x

(
ūε − K

σε

∂ε

∂x

)
+ ∂

∂z

(
w̄ε − K

σε

∂ε

∂z

)

= ε

k
(Cε1Pk − Cε2ε). (22)

In these equations,Pk is the shear production term
modeled within the Boussinesq eddy viscosity appro-
ximation as:

Pk=K
[

2

((
∂ū

∂x

)2

+
(
∂w̄

∂z

)2
)

+
(
∂ū

∂z
+∂w̄
∂x

)2
]
.

(23)

It is simple to demonstrate that in a constant stress
layer (e.g., log-law region of a wall-bounded turbulent
flow) where (by assumption!) production and dissipa-
tion balance,Eq. (22)has the solution:

ε = C
3/4
µ k3/2

kvz
, (24)

with the closure constants related by:

k2
v = σεC

1/2
µ (Cε2 − Cε1). (25)

6 While the linear eddy viscosity hypothesis is reasonable in
simple turbulent shear flows (e.g. boundary layer flow) where
the turbulence characteristics and mean velocity gradients change
slowly following the mean flow, it is known to be unrealistic in
several classes of flows (e.g. strongly swirling flows, flows with
significant streamline curvature, secondary motions that occur in
straight ducts with non-circular cross-section). This has led to the
development of a number of non-linear eddy viscosity models (e.g.
Yoshizawa, 1984; Speziale, 1987; Rubinstein and Barton, 1990;
Craft et al., 1996).

Comparing this result withEq. (18), it is seen that
ce = C

1/2
µ .

Different variants of thek–ε model arise depending
on the different approaches used to determine the clo-
sure coefficientsCµ, σk, σε , Cε1, andCε2. Here, two
forms will be investigated.

The standardk–ε model “(k–ε)0” employs values
for the closure constants that have been arrived at
by comprehensive data fitting for a wide range of
‘canonical’ turbulent flows, with the “standard” values
of the constants given by:

Cµ = 0.09, σk = 1.0, σε = 1.3,

Cε1 = 1.44, Cε2 = 1.92. (26)

These values of the constants correspond to a com-
promise chosen to give the “best” performance for a
range of flows, and it is not likely that minor and/or
ad hoc adjustments to their values would significantly
affect the predictive accuracy.

We shall also present a simulation of windbreak
flow using a more recent version of thek–ε model
developed byYakhot et al. (1992)using the renormal-
ization group (RNG) procedure. In the RNG model
“(k–ε)RNG”:

Cµ = 0.085, σk = 0.72, σε = 0.72, (27)

Cε1 = 1.42− η(1 − η/η0)

1 + βη3
, Cε2 = 1.68, (28)

where

β = 0.012, η0 = 4.377, η ≡ (Pk/K)
1/2k

ε
.

(29)

This functional dependence ofCε1 on the non-dimen-
sional characteristic strain rateη is an empirical result,
the value of the adjustable constantβ having been set
using near-wall turbulence data. It is this ad hoc ad-
justment ofCε1 that is largely responsible for differ-
ences in performance between the standard and RNG
models.

We shall report simulations using the (k–ε)0 and
(k–ε)RNG closures entirely without additional source
or sink terms in thek andε-equations, as discussed in
the previous section (such simulations are designated
“Model 1”). We also investigate two different method-
ologies for incorporating form drag source/sink terms
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in the model transport equations fork and ε (cf.
Eqs. (21) and (22)).

Results designated “Model 2” treatk as if spectrally
divided; such simulations resemble model “Kk”, but
accept literally the Boussinesq closure for the normal
stresses, and modelεcc using the transport equation.
The inclusion of the earlier-derived source/sink term
in the transport equation for TKE yields:
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)
. (30)

The modeled transport equation forεcc cannot be
derived systematically from the unaveraged Navier–
Stokes equation. Essentially, it is a dimensionally
consistent analogy to the associated TKE transport
equation (Eq. (30)):
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(31)

Note that inEq. (31), the portion of the source/sink
term in the TKE equation that has indefinite sign has
been incorporated with the term multiplied byCε1
(‘production of dissipation’), whereas the portion of
the source/sink term in the TKE equation that has a
positive definite sign has been incorporated with the
term multiplied byCε2 (‘dissipation of dissipation’).

Finally, k–ε simulations identified as “Model 3” are
thek–ε analog of the second-order closure model pro-
posed byAyotte et al. (1998)for plant canopy flows.
Here, the total dissipation is split according toEq. (17)
andεfd is determined according toEq. (9). In addition

to the inclusion ofεfd as a sink term in the TKE trans-
port equation, Model 3 includes the MKE→ TKE
transfer term as (AFR):

PMKE = 1

2
krM

3s(z−H)

N∑
k=1

δ(x − xfk). (32)

Hence, for Model 3, the TKE transport equation as-
sumes the following form:
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∂ū

∂z
+ ∂w̄

∂x

)

+ w̄2∂w̄

∂z

)](
s(z− h)

N∑
k=1

δ(x − xfk)

)
,

(33)

where the eddy viscosity is defined here using thetotal
dissipationε, i.e.K ≡ Cµk

2/(εcc + εfd). Ayotte et al.
advocate the use of thetotal dissipation (i.e.ε) for the
determination of the eddy viscosity in this equation
(and, also in the transport equation forεcc), arguing
that this is required to model the “reduction of the
lifetime of energy containing eddies compared to the
‘no-canopy’ case” that arises due to the interaction of
the flow with the canopy.

The free-air dissipationεcc in Model 3 is modeled
using the conventional transport equation for TKE dis-
sipation rate (cf.Eq. (22)), with εcc replacingε every-
where in the equation except in the determination of
the eddy viscosityK. Hence:

∂
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(
ūεcc − K

σε

∂εcc

∂x

)
+ ∂
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(
w̄εcc − K

σε

∂εcc

∂z

)

= εcc

k
(Cε1Pk − Cε2εcc), (34)

with (again)K ≡ Cµk
2/(εcc + εfd).

Here we have but rippled the surface of the ocean
of variants of thek–ε closure!

3.5. Rao–Wyngaard–Coté second-order closure

The Rao–Wyngaard–Coté (RWC) local advection
model(Rao et al., 1974a,b; Bink, 1996; Wilson et al.,
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2001)uses a second-order closure that is not very dif-
ferent from other common second-order closures. In
particular, it differs from LRR principally in that it
does not parameterize the “rapid” part of the pressure
strain. Under neutral stratification, RWC consists of
coupled equations for̄u, w̄, u′2, v′2,w′2, u′w′, and the
mean pressurēp and TKE dissipation rateε.

The prognostic equation foru′2 (≡ σ 2
u ) is:
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In Eq. (35), at andc11 are closure coefficients,τ = 2k/
εcc is a turbulence timescale, and for the present cal-
culations theu′2 sink termεfdx is given by (cfEq. (5)):

εfdx = 4krūσ
2
u s(z− h)

N∑
k=1

δ(x − xfk). (36)

The flow disturbance is “driven” by the sink termsSū
andεfdx in the ū- andσ 2

u -equations.
Away from the fences, dissipation of TKE is entirely

due to the normal vortex-cascade mechanism, and the
RWC ε-equation is:
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)
, (37)

wherea = 1/2 (and the summation convention ap-
plies). This is similar to theε-equations of other
well-known closures, and provided the coefficients
are appropriately chosen, for the equilibrium state it
will result in:

εcc = (cek)
3/2

kvz
= u3∗
kvz

. (38)

Note that in application here of the RWC closure,
no additional sinks or sources ofεcc have been in-
serted due to the presence of the fences. For reasons

of numerical accuracy, we transformedEq. (37) into
an equation for the product(zεcc).

From this section, it must be clear that there is am-
biguity as to what are the proper sources in TKE and
ε-equations. It is for this reason that we have covered a
range of choices, including closures that are too näive
even to contain those equations.

4. Previous simulations of a single fence

Before presenting simulations of a windbreakarray,
it is pertinent to remind the reader of the promising
performance of RANS models for asingle barrier.

4.1. Bradley and Mulhearn’s fence

Bradley and Mulhearn (1983; BM83)carried out
an experiment on neutral flow through a very long,
isolated, porous fence standing on uniform ground,
parameters beingh = 1.2 m, z0 = 0.002 m (h/z0 =
600), andkr = 2. Fig. 1 is a simulation of this exper-
iment. The domain was−10 ≤ x ≤ 100 m,z ≤ 50 m,
and gridlengths were	x = 1 m, 	z = 0.15 m
(	x/h = 0.83,	z/h = 0.125, i.e. very close to the
resolution used for the simulations of a windbreak
array which follow). Fig. 1 is similar to the result
reported byWilson et al. (2001, Fig. 2), and the dif-
ferences are consequences of a minor change in the
program: theū-momentum sink specified byEq. (3)
involves the projection of the square of the mean ve-
locity on thex-axis, whereas in the earlier program
the sink was simply−krū

2.
Wilson (1985) had given similar results for the

BM83 fence, using a range of closures. Other RANS
simulations of the BM83 fence followed, including
those byWang and Takle (1995), Wilson and Mooney
(1997), andLee (2001).

4.2. Ellerslie fence

Wilson (1987)compared observations of the along-
wind profile of mean ground-level pressurep̄0(x) up-
wind and downwind from a single porous plastic fence
on bare ground (h = 1.25 m, z0 = 0.008 m,h/z0 =
160, kr = 2.4), with a simulation using the LRR
second-order closure. Modeled mean pressure was in
reasonable agreement with the observations.
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Fig. 1. Solution of the RWC local advection model for mean wind reduction by an infinitely-long porous fence standing atx = 0,
in neutrally-stratified flow at perpendicular incidence. Symbols give field observations ofBradley and Mulhearn (1983), for the case
(h/z0 = 600, kr = 2), andU04 is the mean windspeed observed upstream from the fence atz = 4 m.

4.3. Surrey wind tunnel fence

Packwood (2000)compared simulations using a
proprietary CFD code against others’ wind tunnel ex-
periments, with two-dimensional solid and porous (23
and 50%) fences. Packwood considered that, regard-
ing previous experiments on flow through a porous
fence, “none give sufficiently detailed data of either
the upstream or downstream flows to permit compari-
son with CFD modeling without some estimate of one
or more of the inlet (upstream) quantities”. On first
sight this appears a surprising statement because, for
example, in the experiment of BM83, all necessary
details of the (neutral) atmospheric surface layer flow
are known, and the normalized mean velocity statis-
tics were reported in detail. However, the comment is
justified by Packwood’s careful focus on “determin-
ing a suitable resistance model for a given geometry
where often only a crude estimate of the volumetric
porosity is available”. That is, Packwood considers
the aerodynamic parameterization of the BM83 fence
to be incomplete, or ambiguous, for he correctly dis-
tinguishes between the drag of a porous screen “not
in the presence of walls or immersed in a boundary
layer”, versus the drag in situ of a real fence. This is

potentially an important point, forWilson (1985)had
proceeded byassuming an adequate estimate of the
resistance coefficient of a fence (in its atmospheric
condition) could be had by blocking a uniform,
non-turbulent stream with a (full-scale) section of the
actual fence. We shall return to this point later.

Here focusing on the results for porous fences, in
Packwood’s simulations the fence itself was repre-
sented as having a finite thickness, spanning about 3
“cells” of a total of about 200 cells along the stream-
wise axis (this means the region of favorable pressure
gradient and flow acceleration within the material is
explicitly represented, whereas in theWilson (1985)
approach the fence is represented by a delta-function
source). The drag coefficient of the porous region
was inferred from earlier measurements. Computa-
tions were reported using both ak–ε closure and,
alternatively, a Reynolds stress closure; the standard
k–ε closure is well known to over-predict production
of TKE near stagnation points, thus in flows about
bluff bodies, and so in Packwood’s computations, a
modifiedε-equation was used.

Regarding prediction of the mean velocity field,
Packwood found that both the closures he examined
performed almost equally well (results were shown for
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x/h = 1,8). This is consistent withWilson (1985)
(who also considered a range of closures) and the
hypothesis7 that the flow disturbance near the fence
is dominated by the influence of the strong adverse
pressure-gradient. Predicted profiles of the Reynolds
stressu′w′ atx/h = 1 were about equally skillful, but
at x/h = 8 the Reynolds stress closure gave clearly
superior results; again, this is completely consistent
with Wilson (1985).

Finally, Packwood noted that while in reality there
is a region of reduced turbulence (“quiet zone”) in
the lee of an isolated porous fence, his simulations
with the Reynolds stress closure over-predictedu′2 in
that region.Wilson (1985)had noted that the LRR
closure does not capture the reduced turbulence in the
quiet zone unless a TKE sink at the fence is included.
Packwood does not state whether in his simulations
the fences were taken to imply additional sources or
sinks of TKE andε, but from his results it seems not.

Thus we conclude that there is a remarkable
harmony of results across these two independent
examinations of the competence of numerical fluid
mechanics for the case of an isolated porous barrier,
with (of particular relevance for this paper) consistent
consequences for the inclusion (or otherwise) of fence
drag modifications of the TKE andε-equations.

5. Simulations of the McAneney–Judd
windbreak array

A sample of the windbreak cloth, provided by Dr.
McAneney, was placed in a wind tunnel (Department
of Mechanical Engineering, University of Alberta) in
order to determine its resistance coefficient:

kr = 	p

ρU2
, (39)

i.e. the pressure drop	p across the cloth, normalized
by the scaleρU2, whereρ is the air density, andU is
the windspeed in the tunnel. Results werekr = 1.66
(atU = 11 m s−1) andkr = 1.74 (atU = 3.0 m s−1).

7 This can be regarded as firmly established: solutions of momen-
tum equations that entirely neglect perturbation Reynolds stresses
capture well the mean wind effects to aboutx/h ≈ 5 and even
beyond.

5.1. Details of numerical method

For the simulations to be reported, the first of the 15
fences of the “aeolian array” was placed atx/h = 0,
the 15th atx/h = 84, and the domain spanned−25 ≤
x/h ≤ 150. Along-wind resolution was	x = 1.5 m
(	x/h = 0.75), thus āu grid-point fell on each fence,
with seven grid-points between each pair of fences.
Vertical grid spacing was	z = 0.333 m (	z/h =
0.167), and the domain depthzmx/h = 75.

All the simulations except those involving thek–ε
model used a staggered arrangement for velocity
components and pressure on the grid (as inWilson,
1985). The simulations with thek–ε model used a
co-located, cell-centered procedure, i.e. all the dy-
namical variables were stored at the same set of grid
points. The co-located arrangement of velocity com-
ponents and pressure provokes chequerboard oscilla-
tions in the pressure field due to the velocity-pressure
decoupling. To avoid this, the method ofRhie and
Chow (1983)was used to interpolate cell face veloc-
ities from the nodal velocity values at the cell center.
This non-linear interpolation essentially introduces a
fourth-order “pressure diffusion” which smooths out
the pressure oscillations.

Numerical method was a variation of SIMPLE
(Patankar, 1980), as summarized byWilson (1985).
Within this scheme, the transport equations and the
pressure-correction equations were solved sequen-
tially and iterated to convergence. For all simulations
except those involving thek–ε model, iterations con-
tinued until the whole-domain̄u-momentum budget
was satisfied to within 1% of the total windbreak
drag in the domain. For the simulations using thek–ε
model, a solution was assumed to have converged
when the sums (over the whole-domain) of the abso-
lute cell residuals, normalized by the respective total
fluxes at the inflow (undisturbed upstream) plane, fell
below 0.1%.

For all closures we checked that the specified inflow
profiles

ū0(z)

u∗0
= log

(
z

z0

)
,

k0(z) = u2
∗0

ce
,

εcc0(z) = u3
∗0

kvz
,

(40)
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were retained as the equilibrium solution,ū(x, z) ≈
ū0(z), etc. after many iterations withkr = 0 (no
barriers).

5.2. Results of simulations

Fig. 2a–ccompare the windspeed̄u(x, z)/ū0h cal-
culated by the models with that observed, at heights
z/h = 1/2, 2. The high-resolution data at 37≤ x/h ≤
41 stem from the values of̄u(x, z)/ū0(z) given by
McAneney and Judd (1991, Table 1), from their ob-
servations between fences 7 (atx/h = 36) and 8;
we re-scaled the given data for presentation inFig. 2
by multiplying by ln [(z − d)/z0]/ ln [(h − d)/z0],
with d = 0.045 m. The mean windspeeds deduced for
(x/h, z/h) = (39,1/2) from McAneney and Judd’s
Fig. 1 and Table 1 are inconsistent (see footnote 8).

Fig. 2ashows that there is a wide spread in com-
puted mean wind across the range of the simplest
K-closures (K0, Kk, (k–ε)0), with little sign of skill
(relative to the observations) in any case. For the
K ∝ λk1/2 closure, results are shown withσk =
5, α = 1 (the values used by WFR); however, results
for the mean flow are not very different with the more
usual choiceσk = 1, nor do variations inα have
much effect; in fact, calculated mean speeds with
theK ∝ λk1/2 closure showed almost no sensitivity
to whether the TKE sinkSTKE ≡ −εfd was or was
not included. It is also evident fromFig. 2athat the
observedmodulation (along-wind variation) in mean
windspeed far exceeds that calculated by the numeri-
cal models.8 Therefore,Fig. 1of McAneney and Judd
(1991)is slightly misleading, in that the interpolative
line drawn between measured mean velocities at mid-
points between widely-separated fences of the array
does not reflect the (actually?) strongly modulated
pattern in mean velocity between any two fences.

Fig. 2b shows that mean windspeeds calculated
with the standard(k–ε)0 model are not very sensitive
to differing treatments of sources and sinks in the

8 If the three leeward-most high-resolution observations inFig. 2
were rescaled to ensure self-consistency between McAneney and
Judd’s Fig. 1 and Table 1, observed modulation would be more
consistent with the models. A pre-publication report on the experi-
ment by McAneney, Judd and Astill states “windspeed varies only
by 13% between fences 7 and 8”. This is far less than the mod-
ulation one infers fromMcAneney and Judd (1991), and which
has been plotted here inFig. 2a–c.

k–ε-equations, while calculations with the(k-ε)RNG

model are distinct, but not better.Fig. 2c compares
the standard(k–ε)0 closure (with sources treated by
spectral division) with the RWC second-order closure.

From these results we can conclude that atz/h =
1/2, the calculations suggestperiodicity downstream
of about the fourth fence (but with a streamwise
modulation that is much too small relative to that ob-
served, as noted above), and do not show the slow but
definitely continuing recovery in mean windspeed that
was observed along the array; the(k–ε)RNG (Model 2)
calculation is marginally superior in the latter respect.
At z/h = 2, none of the calculations capture the
observed minimum windspeed between the third and
fourth fences, and slow recovery further to leeward.
Perhaps the most definite conclusion fromFig. 2 is
that differences between the various predictions are
large, but all are in disaccord with the observations:
does this imply that, of turbulence closures available
to us,none is adequate for this flow?

The periodicity of the modeled mean wind field be-
yond about the fifth fence suggests that, to simulate
the wind in the interior of the array (say, between
fences 4 and 10) it would be acceptable to simulate
a reduced number of fences, using higher resolution.
Such a simulation, using the RWC closure, is shown
(as a dotted line) inFig. 2c; and except downwind of
the (five) fences, is essentially identical to the simu-
lation of the full array (the difference is largely if not
all due to the fact that the gridpointzj falling closest
to z/h = 1/2 differs between simulations). This re-
sult proves two points: that the full-array simulations
can be regarded as essentially grid-independent; and,
that the influence of the leeward ten fences on the flow
about the windward five is negligible (a point which
is fairly intuitive, and which has been observed many
times in earlier studies).

In addition to their observations of the pattern in
the mean wind about the aeolian array, McAneney and
Judd reported the along-wind profile of the standard
deviationσw in vertical velocity.Fig. 3compares sim-
ulated and observed values ofσw(x, z)/σw0. Unless
a TKE sink is included, model predictions underesti-
mate the spatial modulation inσw between the fences.
If the TKE sink is included, then the models predict
that the spatial modulation inσw is much stronger at
lower heights, in agreement with the observations; and
estimate the magnitude of that modulation quite well
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Fig. 2. (a) Simulated (lines) and observed (symbols) normalized mean windspeedU/U0h within the ‘aeolian array’ of 15 windbreaks
(McAneney and Judd, 1991). Parameters of the experiment wereh = 2 m, z0 = 0.007 m, kr = 1.7, andU0h is the mean windspeed
observed upstream from the fence atz = h. Computational resolution was	x = 1.5 m, 	z = 0.333 m. Showing simulations with the
simplest first-order closures. (b) As for (a). Simulations withk–ε closures and several treatments of TKE sources; standardk–ε model,
except where labeled “RNG”. (c) As for (a and b). Comparing simulations using the standardk–ε closure (Model 2) and the RWC
closure. Computational resolution was	x = 1.5 m, 	z = 0.333 m except for the fine-dotted line, which is a finer-resolution simulation
(	x = 0.75 m,	z = 0.2 m) with the RWC closure for the case where only the first five windbreaks are included.
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Fig. 2. (Continued ).

at z/h = (0.5,1). The only other plus of the simu-
lations with TKE sink is that they correctly indicate
strong suppression of vertical exchange occursonly
behind the first one or two fences, and near ground.

5.3. Discussion

Taken overall, the RANS simulations given above
are ambiguous, and quite wrong relative to (these)
observations. On the other hand there have been
many demonstrations that, for sufficiently simple
disturbances of the surface layer, RANS models are
skillful. In the majority of such studies, admittedly,
the flow to be simulated is ‘known’ experimentally,
and so the simulations ultimately publishedcould be
the end result of an exercise that amounts to little
more than ‘fitting’ curves (themth variation of thenth
model) to observations on a graph (we do subscribe
to this viewpoint; on the contrary we consider RANS
is objectively skillful, for simple flow disturbances).
Furthermore, where models have been thoroughly
‘tested’ against observations, there is a tendency for
the disturbances to be of the simplest character, e.g.
disturbances where geometrical regularities prevail.

Cowan et al. (1997)and Sini et al. (1996)noted
the concern that a given standard CFD ‘package’, e.g.
the (k–ε)0 model, put in the hands of different users,

throws up differing solutions of the same flow prob-
lem. This complicates the task of defining the inher-
ent capability of RANS, but let us take the optimistic
viewpoint that the present results, good or bad, reflect
the inherent quality of the turbulence closure—not the
numerical procedure, grid and domain choice, etc.9

Then why should it be that RANS performs quite well
for a single fence and quite poorly for an array of
fences? This is perhaps the more surprising given that
Wilson and Flesch (1999)showed that theK ∝ √

kλ

closure gave a credible simulation of flow through an
array of forest blocks and clearings.10

9 Regarding uncertainty in CFD,Roache (1997)distinguishes
‘verification’ as the assurance that one is ‘solving the equations
right’ from ‘validation’ which has to do with assuring that one is
‘solving the right equations’. In this paper, we suggest from our
comparison of simulations against observations that the model(s)
probably arenot valid, i.e. not based on the right equations—
which is perhaps not very surprising, in view of the well-known
difficulty of properly parameterizing the Reynolds stresses.
10 But here one must emphasize that, not knowing the effective

drag coefficientCdAh for their forest canopy strips, Wilson and
Flesch treated this as afree parameter. Such a freedom, due
to incomplete experimental data, is very common in comparison
of micro-meteorological models and observations, and wherever
exploited, must be seen as having compromised any claim to have
objectively tested (orvalidated, Roache, 1997) a numerical model
or theory.
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Fig. 3. Measured (symbols) and modeled (lines) along-wind profiles of the standard deviation of vertical velocity,σw(x, z)/σw0, in an
array of 15 windbreaks, with blow-up emphasizing the variation between fences 7 and 8.

5.4. Possible reasons for poor agreement of
multi-fence simulation with data

Firstly, how much confidence should be placed in
the observations? The cup anemometers would surely
have overestimated the mean speed, particularly in any
region of high turbulence intensity.Fig. 4shows a cal-
culated horizontal profile of the turbulence intensity
σu(x, z)/ū(x, z) in the windbreak array, according to
the RWC closure. Atz/h = 0.5, the turbulence in-
tensity exceeds 1/2 virtually everywhere, but still it
is unlikely the cups should have overestimated by a

factor of something like 50–200%(Wyngaard, 1981).
Furthermore it is improbable that overspeeding could
explain thepattern of the discrepancy between the ob-
servations and models atz/h = 2. However, there is
reason to be suspicious of the reported between-fence
modulation in mean speed, for the reason given earlier.

Secondly, could there be a problem with the pri-
mary parameterisation of the barriers, i.e. with the
form of the imposed sinks in the momentum equa-
tions?Wilson et al. (1990)showed that inclusion of a
localized momentum sink, neglecting the finite thick-
ness of the mesh and the details of the flow within it,
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Fig. 4. Calculated along-wind profile of the turbulence intensity in the aeolian array, atz/h = (1/2,2), according to the RWC closure.

is a valid alternative to imposition of proper boundary
conditions on the complex surface of a porous barrier.
The sink,krū

√
ū2 + w̄2, is considered to estimate the

mean (kinematic) back-pressure exerted locally by the
barrier on the flow, in terms of the (height-variable)
resolved mean wind “at” the barrier.

However, the resistance coefficientkr = kr(θ) is de-
fined in reference to the passage of a laminar, uniform,
confined stream through the (given) barrier, which is
mounted at an angleθ with respect to the streamlines,
and blocks the stream. Is it valid to carry over the nu-
merical value ofkr from this non-turbulent “reference
flow” and apply it to obtain themean back pressure in
a turbulent, unconfined stream?

The time-variability of the wind vector, and the
non-normality and non-constancy of its orientation
relative to the barrier, are the factors compromising
the representation. At thefirst of a series of porous
barriers, the mean angle of incidence of the windθ̄ ≈
arctan(w̄/ū) at heights of orderh is small (<10◦), but
instantaneous values can be much bigger. Justification
for the näive imposition of a resistance coefficient
on the mean flow comes a posteriori—values ofkr
deduced from shear-less laminar wind tunnel tests,
when thus imposed in the mean momentum equa-
tions, lead to good agreement with field observations
(Wilson, 1985). Surely this must imply that, even

in the fluctuating real-world flow, the instantaneous
pressure of the wind on an isolated fence can not be
too different fromkrρu

√
u2 + v2 + w2?

But what of thefurther complication (relative to the
laminar reference flow) of barrier wakes impinging
on downstream members of the array? Angles of at-
tack on the second and later barriers probably exceed
those at the first barrier, and turbulence intensities
must be higher. Use of the same (constant) value of
kr for all members of an array (of physically-identical
windbreaks) can be justified only by Occam’s razor.
One means to investigate this uncertainty in the treat-
ment we have used here, would be large eddy simu-
lation (LES), assigning each windbreak a resistance
coefficient kr(u, v,w) applied to the instantaneous
(resolved) wind(u, v,w), and varying realistically
with angle of attack.

There is no need to repeat the discussion of our
uncertainty relative to sources and sinks in the TKE
andε-equations, other than to record again that con-
sequences for the calculatedmean flow do not seem
sufficiently important to explain the collective discrep-
ancy of the simulations relative to the observations.

Finally, if none of the above mechanisms explain
the poor simulation, it seems necessary to conclude
(tentatively) that the turbulence closures surveyed are
all unrealistic. Is this at all plausible?Fig. 5 shows
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Fig. 5. Calculated horizontal profile atz/h = 1/2 of each term in thēu-momentum equation, normalized onu2
∗0/h. From the RWC closure

corresponding to results shown inFigs. 2 and 3. The forces have been evaluated such that their sign indicates their contribution towards
∂t ū; that is, negative terms exert a decelerating influence on the wind.

the calculated along-wind profiles of the individual
terms in theū-momentum budget, from the RWC clo-
sure. The fence drag term (−krū

√
ū2 + w̄2) has been

lumped with the pressure gradient, and but for this,
spikes ofpositive (favorable) pressure gradient would
occur at (across) each barrier. The term inFig. 5 la-
belled “Sum” is the residual imbalance, and itshould
vanish; it is non-zero only because the upwind finite
difference here used to estimate the advection terms
differs from SIMPLE’s more refined scheme for fluxes
across control volume faces.

It is evident fromFig. 5 that near the first wind-
break, along-wind advection̄u ∂xū and pressure gradi-
ent∂xp̄ are the dominant terms. The pressure gradient
remains important close to downwind fences, but is
largely annulled by almost a mirror-image pattern in
the force∂xu′2, which results from the imposed TKE
sink. Vertical advection is nowhere very important.
Most significantly, the shear stress divergence∂zu′w′
rises promptly downstream of the first windbreak to
take the dominant place among these forces, except in

the very near vicinity of each subsequent fence; every-
where it acts to re-accelerate the wind. Now whereas
the pressure-gradient force is directly calculated by
the numerical model (and seems to be in reasonable
agreement with observations,Wilson, 1997), the shear
stress is necessarily parameterized, this being the fun-
damental task of the ‘turbulence closure’ that is key to
any RANS model. This is the reason for our hypothe-
sis that the key problem with these poor simulations is
the turbulence closure itself, rather than the treatment
of momentum and TKE sinks.

6. Conclusion

The utility of micro- and agro-meteorology rests
on knowledge of the wind. By some magic (often
stemming largely from symmetry) the mess of detail
that is turbulent flow must be squeezed into a man-
ageably few robust relationships before a description
of such interesting processes as, say, pollen transport,
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can begin. When we address a process on a landscape
that is not ideally flat and unobstructed (i.e. most of
the real world) we may assume that wind models will
be able to provide the needed spatial pattern of wind
statistics, rather than an extensive (and expensive)
program of measurements. But if we may hazard a
generalization from the results given here, then it
would be very unwise to place trust in present RANS
wind models as a stand-alone alternative to mea-
surements, in addressing processes in very disturbed
micro-meteorological flows. Some meteorologists
consider we need only await a fine-enough resolution
in the mesoscale models, which is more or less the
same as to say, enough computing power to push
large eddy simulation (LES) towards other than the
very limited flows presently within its grip. But the
merit of such models for disturbed flows very much
remains to be demonstrated, and there is a profound
difficulty in how to parameterize the increasingly
dominant subgrid turbulence, very near ground.

A reassessment of RANS wind models is timely
because, particularly from the necessity to improve
long term flux estimates from imperfect sites, micro-
meteorologists increasingly are forced to accept that
the idealization of horizontal uniformity is too obvi-
ously limiting—or wrong—to be ignored. And it is
also important because technological society depends
on models (particularly dispersion models, which usu-
ally ignore or näively parameterize flow disturbance)
for the regulation of industry and the environment.

In this paper, we perhaps have bumped against a
boundary, between the do-able and the not do-able,
for RANS models in micro-meteorology.
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