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ABSTRACT

The simplest ‘‘random flight’’ models for the paths of heavy particles in turbulence have been tested against
previous observations of the deposition of glass beads from an elevated source in the atmospheric surface layer.
For the bead sizes examined (diameter 50–100 mm), for which the ratio of particle inertial timescale to turbulence
timescale t p/GL K 1, it was found sufficient to adapt, as others earlier have done, a well-mixed first-order
Lagrangian stochastic (‘‘Langevin’’) model of fluid element trajectories, simply by superposing a gravitational
settling velocity wg and reducing the velocity autocorrelation timescale along the heavy particle trajectory (Gp)
relative to the fluid-Lagrangian timescale (GL). That is to say, unless details of the particle distribution very
close to ground (where t p/GL is not small) are of interest, no advantage other than conceptual clarity can be
found in the more faithful approach of explicitly modeling particle acceleration by means of the particle equation
of motion.

With the timescale reduction parameter b ; 2, the Langevin model estimated the location and width of the
bead deposit swath very well and fixed the peak deposit density to within (at worst) about 100% error (in very
stable stratification), but more generally to within about 20%. In the case where trajectories intersected a tall
crop canopy, uncertainties in the treatment of deposition proved more significant than nuances of the trajectory
algorithm.

1. Introduction

A better understanding of numerous technical and
environmental processes hinges on our ability to cal-
culate the paths Xi 5 Xi(t) of heavy particles in turbulent
flow. An example from engineering is control of the
distribution of liquid fuel droplets in a combustion
chamber, while in the atmospheric context, there is the
challenge of better representing the distribution and de-
position of aerial sprays, and the spread of plant pollen
or disease spores.

Many approaches exist for the calculation of heavy
particle trajectories. For complex, disturbed flows, a
prerequisite task is calculation of the flow-field itself,
perhaps by direct numerical simulation (Brooke et al.
1994; Pan and Banerjee 1996), or large-eddy simula-
tion. Here, however, the discussion is limited to situ-
ations in which the flow itself is ‘‘known,’’ in the sense
that its statistical structure is provided; and we focus
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on the most natural of particle dispersion theories, the
‘‘random flight’’ model, in which an ensemble of par-
ticle trajectories are computed in the given flow. Re-
garding alternative theories of heavy particle disper-
sion, much has been done to specify an effective (par-
ticle) eddy diffusivity (e.g., Yudine 1959; Csanady
1963; Reeks 1977;1 and many others), but a general
formulation, for arbitrary types of particles in inho-
mogeneous turbulence, is probably impossible (see
section 2). Lightstone and Raithby (1998) proposed an
empirical gradient-diffusion closure for the conser-
vation equation governing the probability density func-
tion (pdf ) for particle velocity, but its generality re-
mains to be established. The appeal of the random
flight method is its directness, due to which it is rel-
atively free of theoretical obscurity.

1 Reeks gave an approximate solution for particle dispersion in
stationary, homogeneous, isotropic Gaussian turbulence, inferring
that ‘‘in the absence of gravity, the asymptotic (i.e., large t) particle
diffusion coefficient is in general greater than that for the fluid. Only
when gravity and other external forces are imposed can this effect
be reversed. . . .’’ This finding illustrates the restricted validity of
those formulas that do exist for particle eddy diffusivity.
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Perhaps the most common heavy particle random
flight model is the ‘‘eddy interaction model’’ (e.g., Gra-
ham 1996). This explicitly resolves particle acceleration
d2Xi/dt2 [models of this character will here be called
‘‘Inertial Particle’’ (IP) models], but treats the ‘‘driving’’
fluid velocity ui[Xi(t)] at the location of the particle2 as
constant across ‘‘patches’’ of the fluid, and as changing
discontinuously from eddy to eddy. Others attempt to
more-realistically account for the time evolution of the
driving fluid velocity (e.g., Sawford and Guest 1991).
At a less faithful level of description, one may model
the stochastic particle velocity Upi itself directly, usually
by means of a Langevin-type equation, which will re-
quire to be provided the heavy particle velocity variance,
and the autocorrelation timescale (Gp) along the trajec-
tory (e.g., Walklate 1987).

This paper investigates how well existing heavy par-
ticle trajectory models perform, relative to observations,
in the best understood of turbulent atmospheric flows,
the horizontally uniform atmospheric surface layer. Sec-
tion 2 gives a brief overview of trajectory models, and
in sections 3 and 4 several algorithms will be judged
against field observations of the dispersion of glass
beads, released from a tower at a height (h) a few meters
above ground. It will be shown that the Langevin-type
model suffices to obtain simulations that are about as
accurate as we typically are accustomed to hope for in
atmospheric modeling, and that the IP model offers no
gain in accuracy.

2. Stochastic particle trajectory models

Taylor (1921) initiated the Lagrangian view of the
turbulent dispersion of a passive tracer, which holds a
fundamental advantage relative to Eulerian methods,
namely, that there is no call for assumptions relative to
joint moments of tracer concentration (c) and Eulerian
velocity (ui). The most common of such assumptions is
the eddy diffusion model,

]c
u9c9 5 2K , (1)i ]xi

that is, the first-order closure for the tracer flux density,
in terms of an eddy diffusivity (K). It is well known
(e.g., Corrsin 1974; Wilson 1989) that K theory is in-
adequate wherever the scale of the turbulent eddies car-
rying the unresolved flux is not small relative to the
scale of the dispersing plume or puff, for example, in
the ‘‘near field’’ of a source, and higher-order Eulerian
closures are compromised (Deardorff 1978) by as-

2 The symbol Xi will denote position of a particle, or marked fluid
element. Also, Upi (or Ui) will denote the corresponding particle (or
fluid-Lagrangian) velocity. Eulerian velocity will be designated ui,
mean values (e.g., of ui) by u i or by ^ui&, and fluctuations relative to
the mean by , etc.u9i

sumptions with respect to higher-order joint statistics,
for example, ^ c9&.u9u9i j

a. A hierarchy of Lagrangian stochastic models for
passive tracer dispersion

Wilson and Sawford (1996) reviewed the application
of Lagrangian stochastic (LS) models for passive tracer
dispersion in undisturbed atmospheric boundary layer
flows. The ‘‘zeroth-order’’ LS model for motion along
a single axis (say z, the vertical), is a random walk in
position [the drunkard’s walk, or Random Displacement
Model (RDM)]. Over each time increment3 dt the in-
crement dZ in particle position is given by

dZ 5 a dt 1 b dj, (2)

where a, b are deterministic coefficients, and dj is drawn
randomly from a Gaussian distribution with mean zero,
and (by convention) variance dt. This model is easily
shown to be equivalent to the treatment of turbulent
convection as a diffusion process, and for stationary
turbulence

]K
2a 5 , b 5 2K. (3)

]z

The RDM is fundamentally wrong, and manifests as
such close to a source. Although it may be adequate for
description of the ‘‘far field,’’ there remains the objec-
tion that the eddy diffusivity is not strictly a flow prop-
erty and is not directly measurable.

In the RDM, Xi is treated as Markovian, that is, cor-
relation of particle velocity from one time step to the
next is ignored; thus, the problem that the model is
invalid for travel times short compared to the typical
velocity correlation timescale. This deficiency is rem-
edied in the ‘‘first-order’’ LS model, wherein the Mar-
kovian state variable is (Xi, Ui), and the velocity evolves
in time according to a generalized Langevin equation
(Thomson 1987),

dUi 5 ai dt 1 bij dj j. (4)

In order to uphold Kolmogorov’s similarity theory
^dUidUj& 5 C0«dtdij for the statistics of velocity incre-
ments over small dt, one specifies

b 5 ÏC «d (5)i j 0 i j

(« is the rate of dissipation of turbulent kinetic energy,
and C0 is a dimensionless coefficient). Thomson pro-
vided a constraint on the other model coefficient, the
vector ai, to ensure that the LS model has the property
that, should it hypothetically be applied to the motion

3 The RDM supplies no criterion to limit the magnitude of the time
step dt, other than inhomogeneity scales such as K (]K/]z)22. Choice
of a time step is therefore arbitrary, whereas the Lagrangian auto-
correlation timescale TL naturally limits the time step of first-order
models.
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of tracer that is (already) well mixed in position-velocity
space, the tracer would remain well mixed. In the case
of an LS model for a single velocity component (say,
W, the vertical velocity), the scalar coefficient ‘‘a’’ is
uniquely determined by this ‘‘well-mixed condition,’’
in terms of the probability density function ga(w) for
the underlying Eulerian velocity field (w) of the flow.
If we specify that ga is Gaussian, a useable choice in
treatment of the atmospheric surface layer, then the
unique, well-mixed, first-order LS model for the (fluid
element) vertical velocity is

2 2C «(Z) 1 ]s W0 wdW 5 2 W 1 1 1 dt 1 ÏC «dj02 21 2[ ]2s (Z) 2 ]z sw w

dZ 5 Wdt. (6)

The factor (C0«)21 can be interpreted as being ef-22s w

fectively a Lagrangian correlation timescale TL, in
which case we may rewrite b 5 (C0«)1/2 as b 5
( /TL)1/2. The one-dimensional model [Eq. (6)] serves22s w

as the underlying velocity-evolution model for most of
the heavy particle trajectory simulations reported here,
using both the Langevin and the IP classes of model.
It simplifies to the (basic) Langevin equation if the ve-
locity variance is homogeneous along the vertical.2s w

The influence of atmospheric stratification enters
through the turbulence parameters and the mean velocity
profile u(z).

The well-mixed constraint does not select a unique
multidimensional LS model. Where simulations have
included the Lagrangian alongwind velocity fluctuation
U9, Thomson’s two-dimensional model for Gaussian in-
homogeneous turbulence has been used, that is,

2b wu2dU9 5 2 U9s 2 W u9w9 dt 1 dt 1 bdj1 2w u22s ga

2b ww2dW 5 2 Ws 2 U u9w9 dt 1 dt 1 bdj1 2u w22s ga

dX 5 [u(Z ) 1 U9]dt

dZ 5 Wdt. (7a)

Here, ga(U9, W) is the height-dependent (Eulerian) joint
velocity pdf; s 2 5 2 ; and the w’s are given2 2 4s s uu w *
by

w 1 ]u9w9u 5
g 2 ]za

21 ]su 2 21 s U9W 2 u9w9W1 2w2 [2s ]z

]u9w9
2 21 s W 2 u9w9U9W1 2u ]]z

2 2w 1 ]s 1 ]sw w w 2 25 1 s W 2 u9w9U9W1 2u2 [g 2 ]z 2s ]za

]u9w9
2 21 s U9W 2 u9w9W . (7b)1 2w ]]z

Note that the fluctuations U9 and W have been simulated
using the same timescale (GL) and model coefficient b
5 ( /TL)1/2. Equations (7) simplify considerably in22s w

the case of a constant stress layer (e.g., as in simulations
of section 3).

A first-order LS model, like Eqs. (6) or (7), correctly
predicts the rate of dispersion even in the near field of
a source, where travel time t is not large w.r.t. GL, in
contradistinction to the RDM and to Eulerian models.
Of course, the trajectories are not valid for travel times
on the order of the acceleration timescale. To treat such
exceptionally short-range trajectories, or trajectories in
low Reynolds number turbulence, one may introduce a
second-order LS model (e.g., Du et al. 1995). In this
case the Markovian state variable is (Xi, Ui, Ai), where
Ai is the acceleration, modeled as dAi 5 aidt 1 bijdj j.

b. Inertial-particle trajectory models

The weaknesses of the Eulerian approach, and in par-
ticular of K-theory closure, carry over to the case of
dispersing particles. The restricted validity of existing
formulas for particle eddy diffusivity has already been
mentioned, and the trajectory-simulation approach
seems the best way to circumvent the difficulty. But
how ought the particle trajectories to be constructed?

Let us assume rigid, nonrotating spherical particles,
whose density rp greatly exceeds the fluid density r.
Then a simplified particle equation of motion can be
adopted, and for the purposes of this paper it will suffice
that we define the IP class of particle trajectory models
to have the form

dU u (X ) 2 Upi i i pi5 2 gidt F(t)

du 5 a [X , u , (u 2 U ), . . .]dt 1 b dji i i i i pi i j j

dX 5 U dt. (8)i pi

If we assume further that the slip Reynolds number Re

5 d |u(X) 2 Up|/n is small (d is particle diameter, and
n is fluid kinematic viscosity), then F 5 constant 5 t p,
the particle acceleration timescale.

No obvious generalization of Thomson’s well-mixed
condition can be invoked to select the model coefficient
ai. For suppose at t 5 0 we released into stationary, hor-
izontally uniform turbulence, bounded on the inhomoge-
neous axis (z) by perfectly reflecting boundaries, a single
particle. Suppose that this particle has mass (inertia), but
that no body force affects it (gi 5 0). For sufficiently large
t, whatever the initial position (fixed or random) of the
particle, the system will move to an equilibrium, in the
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sense that the (mean) vertical mass flux density will vanish,
and statistics of the system will have attained constancy
in time. What is the equilibrium particle distribution (on
the z-axis) in such a system? Presumably the state of max-
imum entropy; but how is the entropy of this system de-
fined? ‘‘Turbophoresis’’ must imply that the equilibrium
particle distribution is nonuniform.

c. Turbophoresis

The existence of turbophoresis was first suggested4

(and the effect named) by Caporaloni et al. (1975), who
reasoned that a (mean) particle mass flux can occur in
conjunction with a uniform particle distribution, in re-
sponse to spatial inhomogeneity of the turbulent velocity
fluctuations. By ‘‘assuming that the motion of a particle
under nonisotropic turbulent ‘shocks’ is analogous to
the motion of a particle under asymmetrical molecular
shocks (thermophoresis) as described by Einstein,’’ they
derived a formula for the turbophoretic drift velocity.
Reeks (1983) gave a more formal analysis (an approx-
imation for the evolution of the joint probability density
function for particle position and velocity), deriving a
turbophoretic velocity that is related to the spatial gra-
dient in the particle mean-square velocity tensor (m ij),

]mi jU 5 t . (9)i , t f p ]xj

Reeks cautioned, however, that ‘‘the precise form of the
turbophoretic term . . . depends upon . . . the closure
approximation we adopt.’’ It is interesting to note that
turbophoretic drift occurs even in the case of particles
in a flow that is inhomogeneous only by virtue of a
gradient in turbulence timescale, such as the (idealized)
neutrally stratified atmospheric surface layer, where, if
we follow convention and overlook the ‘‘Unresolved
Basal Layer’’ (Wilson and Flesch 1993) we have a sys-
tem with constant velocity variance, but with timescale
GL decreasing to zero at the ground.

Reeks (1983) considers the turbophoretic term ‘‘a
manifestation of the skewness in the velocity distribu-
tion of the particle.’’ In any case, as regards selection
criteria for heavy-particle trajectory models, the well-
mixed condition clearly does not apply in its original
sense (even in the absence of body forces). A properly
formulated heavy particle trajectory model should re-
produce turbophoresis—but this will presumably arise
quite naturally, for a large ratio t p/GL (e.g., near the

4 Observation of turbophoresis is complicated. One seeks to ob-
serve a mean particle flux in the absence of a corresponding mean
particle-concentration gradient, but, in natural systems a concentra-
tion gradient near boundaries generally occurs, due to particle de-
position. Clear indication of the real existence of turbophoresis has
been drawn from idealized direct numerical simulations (Brooke et
al. 1994).

ground) will result in a reduced mean-square particle
velocity . . . and turbophoresis.

d. Heuristic models of the driving fluid velocity for
IP models

In one of the earliest heavy-particle trajectory models
to be developed after the provision (Thomson 1987;
Pope 1987) of selection criteria for LS models of passive
tracer dispersion, Sawford and Guest (1991) ‘‘attempted
to combine the understanding of heavy particle effects
gained from studies in idealized stationary homoge-
neous turbulence with a good model of passive scalar
dispersion for more realistic flows.’’ Treating particle
motion in decaying homogeneous isotropic turbulence
(an analogue for grid turbulence), Sawford and Guest
commenced from the well-mixed LS model for tracer
dispersion,

2 221 s ds
dU 5 2u 1 dt 1 ÏC «dj , (10)i i 0 i1 2G 2 dt

where G 5 2s 2(C0«)21 and s 2 is the Eulerian velocity
variance. Sawford and Guest reasoned that correlation
in fluid velocity along a heavy particle trajectory should
be reduced relative to correlation along a fluid element
trajectory, so, the above (generalized) Langevin equa-
tion with a reduced timescale was considered to generate
an appropriate driving fluid velocity for imposition in
the particle equation of motion (their rationale for the
timescale reduction is given in appendix A). Simulations
were in quite good agreement with the laboratory (grid
turbulence) experiments of Snyder and Lumley (1971).

Other IP models that perform comparably well rel-
ative to the limited observations available have been
reported (e.g., Zhuang et al. 1989, whose IP model was
more complex, in that the trajectories of both the heavy
particle and a driving fluid element were tracked). IP
simulations of section 4 evolve the driving fluid element
velocity using the well-mixed fluid element trajectory
model for Gaussian inhomogeneous turbulence [Eqs. (6)
or (7)], the timescale (where noted) being reduced in
the same manner as by Sawford and Guest.

e. Langevin class of particle trajectory models

Several authors [perhaps first Yudine (1959, and ear-
lier), Csanady (1963), and others since] have suggested
that for typical atmospheric problems, particle inertia is
not very important, even, for example, for liquid drop-
lets of diameter as large as d 5 400 mm. Wilson et al.
(1981) simulated their field experiments (glass beads,
t p 5 0.012 s) by tacking a gravitational settling velocity
(wg 5 0.12 m s21) to a first-order Lagrangian stochastic
model for tracer trajectories. Recent treatments of aerial
spray dispersion have taken the same line, and the main
distinction between them rests on whether the under-
lying (tracer) trajectory model respects (or otherwise)
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Thomson’s well-mixed constraint (wmc); results of
MacInnes and Bracco (1992), who examined several
models not satisfying the wmc, usefully illustrate the
seriousness of errors that can result. To give a few ex-
amples of these recent Langevin treatments of spray
dispersion, Wang et al. (1995) adopted Thomson’s two-
dimensional well-mixed tracer dispersion model for a
Gaussian velocity pdf [Eqs. (7)], and used Eq. (A1) to
specify the correlation timescale Gp in terms of TL 5
2 (C0«)21. Hashem and Parkin (1991) earlier had used2s w

a tracer model predating the well-mixed constraint, and
reduced Gp relative to TL according to an equation dif-
fering from (A1). Wallace et al. (1995) also used an old
LS tracer model (though it may have been well mixed),
but did not reduce Gp.

In none of these Langevin treatments of aerial spray
was the particle vertical velocity variance ( ) treated2s wp

as distinct from (i.e., potentially smaller than) the fluid
Eulerian velocity variance . On that point, while the2s w

ratio swp/sw is known for some idealized cases, such as
‘‘oscillating Stokes flow’’ (e.g., Wilson et al. 1988), in
general its value is inaccessible, and any theory fixing
it implicitly has already solved the heavy particle tra-
jectory problem. In their Langevin model for transport
of evaporating ocean sprays, a model based on the Legg
and Raupach (1982) LS treatment for passive tracer,
Edson and Fairall (1994) reduced both swp and Gp rel-
ative to their counterparts for a fluid element trajectory,
invoking to that end formulas drawn from analytical
studies. Essentially the same treatment was adopted by
Lakehal et al. (1995) in calculations of raindrop trajec-
tories in complex, urban wind flows.

If a Langevin-type model is adopted, and it is a well-
mixed model (according to Thomson’s criterion), then
it cannot reproduce turbophoresis; for even if provided
the (proper) near-ground gradient in particle velocity
variance, by virtue of being a well-mixed model it will
present a well-mixed state as the equilibrium condition.
This objection to the Langevin class of model does not
appear to be very serious, for in problems of practical
interest, only very close to ground is t p/GL sufficiently
small to induce turbophoresis.

f. Notation and numerical details, for models to be
tested against observations

In section 3, the following trajectory models (and
variations thereof ) will be compared with observations:

R RDM: Eq. (2) with superimposed gravitational dis-
placement wgDt for each time step Dt; coefficients as
in Eq. (3), with K 5 TL. Time step Dt 5 TL(h), or2s w

Dt 5 0.1TL(h), or Dt 5 0.1TL(z).
R Sticky Fluid Element Model (SFE): Langevin model

[Eqs. (6)]. Heavy particles are treated as fluid elements
(no inertia or gravitational settling), but on contact
with ground are deposited. For all Langevin-type

models, dt 5 0.1Gp, and unless otherwise stated, swp

5 sw.
R Settling Sticky Fluid Element Model (SSFE): Lan-

gevin model [Eqs. (6)], modified only in so far as a
constant gravitational settling velocity is superposed
on the vertical velocity, that is, dZ 5 (W 1 wg)dt,
and ground is treated as perfectly absorbing surface.

R Two-dimensional Settling Sticky Fluid Element Mod-
el (SSFE 1 U9): Two-dimensional Langevin model
[Eqs. (7)], with superposed settling velocity.

R Settling Sticky Fluid Element, Reduced G (SSFET):
Langevin model, with superposed settling, and with
Gp reduced to account for eddy fallout (crossing tra-
jectory) effect.

R Inertial Particle: Driving fluid velocity calculated with
Gp reduced to account for eddy fallout; dt 5 0.1
min(t p, Gp).

3. Simulations of Suffield heavy particle dispersion
trials

Hage (1961) and Walker (1965) reported observations
of the deposition of glass beads (mass mean diameter
d 5 49, 56, or 107 mm), released continuously over
durations of 30–60 min, from a point source at height
h 5 7.4 or 15 m over prairie land at the Suffield Re-
search station in southern Alberta, Canada. Fifteen such
trials covered a wide range in atmospheric stratification,
and for each trial micrometeorological data are avail-
able, including the mean wind speed u(z) at heights z
5 0.5, 1, 2, 4, 8, and 16 m, and the mean temperature
difference between z 5 0.5 m and z 5 4 m. Appendix
B documents how the surface layer scales u*, L, z0 have
here been determined for each trial (see Table 1), as
well as the velocity statistics that have been assumed
for simulations. Appendix C describes how the reported
particle size distribution was represented.

a. Regularity and credibility of the observed
deposition pattern

The number-density of beads deposited [n, (m22)] was
observed as a function of azimuth u and downwind
distance x, on arcs at increasing radii up to (in some
trials) a maximum x of 1100 m. By attributing to each
particle an identical mass M (kg), Hage and Walker
constructed from n(x,u) a normalized, crosswind-inte-
grated mass density

M
D (x) 5 n(x,u)x du, (11)0 EQ

where Q (kg s21) is the source strength. Hage reported
that graphical integrations for the ‘‘recovery’’ Ro 5

D0(x) dx indicated that the fraction of released massX#0

deposited in the array ranged from 0.85 to 1.05 (trials
1–9), while Walker cited recoveries ranging from 0.65
to 1.00 (trials A–L). Observed deposition D0(x) is sub-
ject to some small degree of error due to the assignment
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TABLE 1. Surface-layer scaling parameters for the glass bead dispersion trials at Suffield, Alberta [derived from information provided by
Hage (1961) and Walker (1965)].

Walker’s label Hage’s label h (m) d (mm) u* (m s21) L (m) z0 (m) wg/u* Recovery

A
B
C
D
E
F
G
H
I
J
K
L

2
3
5
6
8
9

15
15
15
15
15
15
7.42
7.42
7.42
7.42
7.42
7.42

107
107
107
107
107
107

56
56
56
49
49
56

0.35
0.39
0.44
0.39
0.59
0.42
0.21
0.28
0.18
0.51
0.47
0.57

30
104
341
107

286
241

52
35
16

2105
248
250

0.037
0.014
0.025
0.028
0.014
0.031
0.043
0.004
0.016
0.021
0.017
0.012

1.66
1.49
1.32
1.49
0.98
1.38
0.9
0.68
1.06
0.27
0.3
0.25

1
1.11
0.89
0.94
1.05
0.98
0.92
0.91
1.17
0.71
0.82
0.74

of equal masses to all observed particles, and unless the
streamwise integration for Ro extends adequately far
downwind, there is no requirement that Ro 5 1. But the
form of the D0(x) profiles given strongly suggests the
observational array provided sufficient downwind span,
and so one suspects serious experimental error (perhaps
a subperiod of lateral drift carrying particles outside the
array of deposition cards) in any trial for which |Ro 2 1|
exceeds about 0.1 and certainly 0.2.

For each trial, observed recovery Ro was here esti-
mated (see Table 1) by integrating D0(x), using piece-
wise linear interpolation between observations. Values
of Ro so-calculated ranged from 0.71 to 1.17, a rather
different outcome than was cited by Walker (0.65–1.00).
The discrepancy may be due to use of different inter-
polations for the integration. For trials J, L the present
estimate of |Ro 2 1| is almost 0.3, while for all other
trials |Ro 2 1| # 0.2, and in particular for trials A–H,
|Ro 2 1| # 0.11. On these grounds (fraction of released
mass accounted for) one may place reasonable confi-
dence in trials A–H.

Figures 1a,b show the horizontal profile of the cross-
wind-integrated deposition rate D0, for six trials having
d 5 107 mm (wg 5 0.6 m s21, t p 5 0.06 s) and h 5
15 m. Trial A (RoA 5 1.00) during most strongly stable
stratification exhibits the narrowest deposition swath,
with latest onset (plume arrival at ground delayed), and
(at center) the highest deposit density. Conversely trial
F (RoF 5 0.98) representing most strongly unstable strat-
ification shows earliest onset, wider (but not widest)
spread, and lower peak density. There the regularities
stop: trials B, D (RoB 5 1.11, RoD 5 0.94) ought to show
identical D0(x), on the basis of their nearly identical
surface-layer state (u*, L); one might hope to blame this
irregularity on variability of the ratios su,y /u* due to
varying large-eddy energy (a variability not accounted
for by u*, L); but that hope is ill-founded for, as will
be shown, simulations are rather indifferent to the in-
clusion of the fluctuation U9. On the basis of observed
Ro, presumably trial D ought to be preferred over trial

B (and happily, simulations to be reported agree better
with trial D than with B). Not much improvement is
gained as regards the ordering of the peak deposit den-
sities, when D0 is multiplied by a reference wind speed
to provide a deposit-density profile D0U15 normalized
against varying wind speed (and implied plume dilu-
tion). However, one gains a perfect ordering of the swath
leading edge (Fig. 1b).

Figure 2 gives the deposit pattern for trials with small-
er beads (d 5 49, 56 mm; wg 5 0.14, 0.19 m s21)
released from a lower source at h 5 7.42 m, in com-
parison with the (h, d, wg) 5 (15 m, 107 mm, 0.58 m
s21) observations. Again for the lower source, the lead-
ing edge of the deposit swath is positioned farther up-
wind in unstable than in neutral or stable stratification,
and peak deposit densities are highest in stable strati-
fication, a feature which is (once again) not explainable
in terms of plume dilution (peak values of D0U15 are
not invariant across trials). Stable (unstable) stratifica-
tion leads to the narrowest (widest) swath from the lower
source. Figure 2 shows that although the ‘‘fall time’’
h/wg is actually larger for the trials with the lower source
(39 or 53 s, versus 26 s for the higher source, this being
due to the smaller beads used), the position of the core
of the deposit swath is only marginally shifted, and at
that, upwind.

Figures 1 and 2 span a narrow range of an experi-
mental parameter space (u*, L, d, h) that might poten-
tially admit a rich range of D0(x) patterns. There is no
basis to expect these data should be easily ‘‘collapsed’’
by normalization, and one need not be disconcerted that
they manifestly do not. The lack of a simple and un-
ambiguous visually discernable pattern does not imply
a lessened value of these data as a criterion for particle
dispersion models. In the comparisons to follow, trial
F will be taken to represent strongly unstable stratifi-
cation; trial C near-neutral stratification; and trial A
strongly stable stratification.
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FIG. 1. (a) Observed crosswind-integrated deposition rate D0 (mg g21 m21) vs downwind distance x, for 107-mm glass spheres released
continuously from a source at h 5 15 m. Trials are labeled according to Walker (1965); D0 is normalized on the source strength Q (g s21).
Symbols suggest the effect of stratification on the plume spread (m 5 unstable; v 5 near-neutral; . 5 strongly stable). (b) Observations
of (a) rescaled as U15D0 vs nominal travel time x/U15.

b. Results of simulations

In simulations Np $ 4 3 105 particles were released;
ground deposition rate was resolved in collectors of
width Dx 5 1 or 4 m, the particles being deposited
whenever they crossed the level z 5 z0.

Figure 3a compares a sequence of the most rudimen-
tary of Lagrangian models with the observations of the
surface deposition pattern of the neutral Trial C (RoC 5
0.89). The ‘‘no-turbulence impact point’’ for this trial,
that is, point of impact if a particle should simply fall
at its terminal velocity [so that its height Z(t) 5 (h 2
wgt)] while undergoing horizontal translation at a ve-
locity dX/dt 5 u(Z(t)), is Xb 5 159 m. The peak in the
observed deposit pattern occurs slightly upstream from
Xb. Unsurprisingly, when the beads are treated as sticky
fluid elements, the onset of the deposit swath is too far
downstream, and the deposit swath is too wide, essen-
tially a plateau stretching far downwind from Xb. The
RDM (here implemented with timestep Dt 5 GL), which
accommodates particle settling and surface adhesion,
positions the leading edge of a too-wide deposit swath
too far upstream, underestimates peak density, and over-
estimates density far from the source.

At this point it is useful to consider the ‘‘range’’ of

these Suffield diffusion trials. We may define a nor-
malized travel time

swk xyx u x*ø ø , (12)
u(h)T (h)L h h

ah ln h ln1 2 1 2z z0 0

from the source to any downstream range (x), and taking
x ø 100 m, that is, the location of peak deposition for
trial C, one finds x/u(h)GL(h) ø 1.0. By this criterion,
we should regard the Suffield trials as examining the
‘‘near field’’ of the source, within which a strong mem-
ory of the initial (release) velocity is sustained. Recall
that in the (very) near field of a source in homogeneous
turbulence, Taylor’s (1921) theory gives for the rms
displacement (i.e., plume spread) the result sz 5 swx/u,
i.e., there is asymptotically (small travel time t or travel
distance x) no sensitivity to the autocorrelation time-
scale. The RDM simply does not handle the near field,
and its poor performance here is therefore unsurprising.
Returning to Fig. 3a, rather good agreement with the
observations results (SSFE), by using a Langevin class
model as for a fluid element, but with an added settling
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FIG. 2. Comparison of the observed deposit patterns for source heights h 5 7.4, 15 m.

velocity wg, and surface adhesion. To be sure this model
(and the more complex simulations of Fig. 3b to follow)
overpredicts D0 far downstream at x 5 400 m, but per-
haps not much need be made of this in view of the
remarkable fidelity overall.

Figure 3b displays the results of simulations with var-
ious refinements of the Langevin model, as well as with
the more time-consuming IP model. Results from the
IP model are identical to those from the corresponding
Langevin model. This has always been found to be the
case, or at least no convincing exceptions have been
noted, provided equal values are assigned for b and
other physical or numerical parameters; and it is no
doubt to be expected, provided that over the greatest
part of the trajectories, t p K Gp. However, an IP model
is in principle needed, if one wished to resolve details
of the particle distribution very near the surface, where
t p/Gp is not small.

Figure 3b shows that inclusion of the alongwind fluc-
tuation U9 is evidently of minor import in this case. The
step of recognizing Gp as being smaller than GL does
improve model agreement with the x 5 400 m obser-
vation and does a better job of positioning the upwind
edge of the deposit swath. As far as this particular trial
is concerned, the optimal value of b for the vertical

velocity component, which would be 3/2 if one simply
took over the findings of Sawford and Guest (see ap-
pendix A), is smaller than 2. But as the recovery for
this trial RoC 5 0.89, an optimization is scarcely justi-
fiable. As to the impact of reducing swp relative to sw,
which is arguably necessary near ground where t p/Gp

in principle becomes large (particle inertia limiting par-
ticle response to rapid velocity fluctuations), the sim-
plest such parameterization (e.g., Walklate 1987; Edson
and Fairall 1994),

212s twp p5 11 c , (13)
2 1 2s Tw p

had no observable impact on simulated D0(x); for ex-
ample, for trial C, a simulation with c 5 1 and b 5 2
was indistinguishable from that (shown on Fig. 3b) with
c 5 0, b 5 2.

Before closing the discussion of the quality of LS
simulations of trial C, we return to the issue of this (and
the other trials) being ‘‘near field’’ experiments, at least
according to the observation that in the middle of the
deposition swath x/u(h)GL(h) is not large; then, could
the demonstrated success of the higher-order models to
some extent (even largely) rest on the fact of their up-



1902 VOLUME 39J O U R N A L O F A P P L I E D M E T E O R O L O G Y

FIG. 3. Observations (v) and simulations of the along-wind profile of crosswind-integrated
surface deposition rate, for the Suffield heavy particle dispersion trial C (near-neutral, L 5 341
m; RoC 5 0.89). Particles (wg 5 0.6 m s21, t p 5 0.06 s) released at h 5 15 m, and all models
neglect u9 unless noted. (a) Lagrangian stochastic simulations, in ascending order of complexity:
RR, ‘‘Random Release’’ (release velocity sustained); RDM, ‘‘Random Displacement Model’’;
SFE, ‘‘Sticky Fluid Element’’; SSFE, ‘‘Settling Sticky Fluid Element’’ (Langevin-class, with added
wg). (b) SSFE [as on (a)]; SSFE 1 u9 (alongwind fluctuation included); SSFET, b 5 2, 5 (Langevin
model with wg, and Gp , TL); IP, Inertial Particle model with b 5 2.
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FIG. 4. Observations (v) and simulations of the along-wind profile of crosswind-integrated
surface deposition rate, for the Suffield heavy particle dispersion trial F (unstable stratification,
L 5 241 m; recovery RoF 5 0.98). Particles (wg 5 0.6 m s21, t p 5 0.06 s) released at h 5 15
m. Solid lines, Langevin simulations with b 5 (0, 2, 5); dashed lines, Inertial Particle simulations
with b 5 (1, 2).

holding a realistic release velocity (randomly chosen
from a Gaussian distribution whose variance is se-2s w

curely known, through measured u*) along a memory-
dominated trajectory to ground? To test this possibility,
trial C was simulated by releasing particles at the source
(z 5 h) with the sum of the gravitational settling velocity
and a random turbulent velocity from the Eulerian ve-
locity probability density function, that is, w 5 sw(h) r
2 wg, where r is a standardized Gaussian variate. This
release velocity was sustained until particles were de-
posited or flew beyond the range of observations [the
trajectory was resolved with time step Dt 5 0.001GL(h)].
The outcome, included on Fig. 3a as ‘‘RR,’’ is reassuring
in that it confirms that the success of the random flight
models does depend on their having a strong physical
basis, and that the trajectories of these dispersion trials,
while ‘‘short,’’ are not so short as to be insensitive to
changes in the wind along their course.

Figure 4 compares observations and simulations of
trial F (RoF 5 0.98), undertaken in strongly unstable
stratification, for which the no turbulence impact point
Xb 5 124 m. For given b, the Langevin class and the
Inertial Particle models yield identical results, while
progressive reduction of the timescale (b 5 0, 1, 2, 5)
improves the positioning of the leading edge of the de-
posit swath, with correspondingly improved agreement
over the entire range of x. A two-dimensional, Langevin

simulation (SSFE 1 U9 with b 5 0), not shown, closely
matches the results indicated on Fig. 4 for b 5 1.

The observed deposit swath for trial A (stable strat-
ification, L 5 30 m; RoA 5 1.00) is narrow and strongly
peaked. None of the simulations (Figs. 5a,b) match the
observations very well at every x, but those with b 5
5 are much better than with b 5 0 or 2. The two-
dimensional simulations of (5b) invoke the same fun-
damental timescale GL for both velocity components;
and where Gp is reduced relative to GL, the fractional
reduction is identical for U9 and W. Addition of the
alongwind fluctuation has insignificant impact; and nei-
ther does accounting for the size spectrum (see appendix
C, and Table C1) achieve much gain.

Trials B and D (Fig. 6) ostensibly were undertaken
in identical atmospheric conditions (u* 5 0.39 m s21;
L 5 1100 m), but the outcomes D0(x) are distinct.
Simulations show better agreement with trial D (|RoD

21| 5 0.06) than with trial B (|RoB 21| 5 0.11). As
earlier noted, accounting for the particle size spectrum
makes an insignificant difference to the model D0(x)
except on the edges of the swath.

Figure 7 compares simulations with observations of
the deposit pattern from a near-neutral trial (L 5 2105
m) with smaller (mass mean diameter d0 5 49 mm)
beads released at a lower level, h 5 7.42 m (trial J, RoJ

5 0.71). The RDM gives poorest treatment. Simulations
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FIG. 5. Observations (v) and simulations of the alongwind profile of crosswind-integrated surface deposition rate, for the Suffield heavy
particle dispersion trial A (stable stratification, L 5 30 m; RoA 5 1.0). Particles (wg 5 0.58 m s21) released at h 5 15 m. (a) Mono-size,
one-dimensional simulations; Langevin for b 5 (0, 5); and IP for b 5 2. (b) Langevin simulations, with size-spectrum (except where noted),
for b 5 (0, 5). – – – one-dimensional, two-dimensional.

of trial J are only weakly sensitive to the value specified
for the timescale-reduction parameter b, not at all sen-
sitive to specification of the (estimated) bead size spec-
trum, but there is a slightly more noticeable sensitivity
to the alongwind fluctuation u9 than was seen in other
trials. This is not surprising, given that as source height
(h) is reduced, the beads are injected into a wind with
larger longitudinal turbulence intensity su(h)/u(h).

Of all heavy particle dispersion trials here examined,
simulations of trial A are least satisfactory (order 100%
error). Trial A represents very stable stratification (in
Hage’s words, ‘‘intense inversion at night in winter over
frozen ground’’). It is well to bear in mind that values
of L assigned to these trials (Table 1) hinge on only a
single measured vertical temperature difference, and
that such differences can be troublesome to measure;
simulations may perhaps not have properly represented
the actual flow. Even if the trials were represented well
by the scales given in Table 1, there is no doubt that
micrometeorological theories, notably the Monin–Obu-
khov similarity theory according to which we anticipate
definite interrelationships between the various flow
properties (relationships we therefore embed in the tra-
jectory models), are at the margin of their effectiveness

in the very stable limit, for various well-understood rea-
sons (including influence of surface slope; shallowness
of the (putative) constant flux layer; possible radiative
divergence; possible wave contribution to velocity fluc-
tuations). Thus, we may regard the general capability
of the Langevin model for particle trajectories as con-
siderably better than is reflected by this worst (seen)
case; perhaps the Langevin model, with b held constant
(b ø 2), more generally mimics ‘‘reality’’ to within
about 20%.

4. Simulations of Elora heavy particle dispersion
trials

In such contexts such as spore, pollen, or aerial spray
transport, one’s interest lies in trajectories near or within
a tall canopy, a case lying outside the scope of the
Suffield heavy particle dispersion trials. Wilson (1980)
and Wilson et al. (1981; hereinafter WTK) reported con-
centration profiles of 40-mm diameter glass beads (wg

5 0.12 m s22; t p 5 0.012 s) at short distances from a
continuous point source set above a corn crop. Source
strength was known approximately, but a precise cross-
wind integration was not possible from the (only) three
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FIG. 6. Observations and simulations of the alongwind profile of crosswind-integrated surface
deposition rate, for the Suffield heavy particle dispersion trials B, D (l, v), under weakly stable
stratification (L ø 105 m); recoveries RoB 5 1.11, RoD 5 0.94. Particles released at h 5 15 m.
Solid lines give Langevin simulations with monochromatic drop size (wg 5 0.58 m s21) for b 5
(0, 1, 2). Dashed line gives Langevin simulation for spectrum of droplet sizes, with b 5 1.

FIG. 7. Observations (v) and simulations of the alongwind profile of crosswind-integrated surface deposition rate, for the Suffield heavy
particle dispersion trial J (unstable stratification, L 5 2105 m; recovery RoJ 5 0.71). Particles (wg 5 0.14 m s21) released at h 5 7.4 m.
(a) ········ RDM with Dt 5 0.1GL(h), – – – RDM with Dt 5 0.1GL(z), and one-dimensional (no u9) Langevin simulations with b 5 (0,
5). (b) Influence of inclusion of u9 (········) vs otherwise ( ), in Langevin simulation with b 5 0. (c) Comparison of IP ( ) and
Langevin (– – –) treatments, with b 5 2.
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FIG. 8. Simulated and observed [v, Wilson et al. (1981) trial of
2 Jul 1979] vertical profiles of normalized concentration of glass
beads (wg 5 0.12 m s22, t p 5 0.012 s) at distance x 5 20 m downwind
from a continuous source at height h 5 2.51 m above sparse, immature
corn (canopy height hc 5 0.2 m). Simulations use the Langevin-class
model, and indicate sensitivity to timescale reduction (b) and height
of ‘‘surface’’ absorption zab 5 (z0 or hc). Solid line duplicates sim-
ulation by WTK, b 5 0, zab 5 z0; dashed lines, b 5 2, with zab 5
z0 or hc; and dotted lines, b 5 5, with zab 5 z0 or hc.

concentration masts. Cup anemometers provided the
profile of mean wind speed u(z), and a sonic anemom-
eter measured root-mean-square vertical velocity sw at
a single height (zref) above the canopy.

a. 2D simulation of a ‘‘no-canopy’’ (large h/z0)
Elora trial

Figure 8 compares Langevin model simulations of
the crosswind-integrated bead concentration profile [no-
tation c(z) or C(z)] when the beads were released at
height h 5 2.51 m above a very sparse, short, immature
crop (hc 5 0.2 m; trial of 2 July 1979 from WTK; sw

5 0.5 m s21; u* 5 0.4 m s21). The point to be made
is that model concentration profiles are sensitive not
only to the timescale reduction (b), but also, and very
vitally, to treatment of canopy absorption. Appreciable
differences in near-ground concentration result from the
alternative choices of perfect absorption at the rough-
ness height z0, or at crop height hc 5 0.2 m. Neither of
these choices can be defended, in view of the small
wg/sw in these trials, which likely permitted ‘‘reflec-
tion’’ of some proportion of bead trajectories. But there
is not sufficient information to attempt a rational treat-
ment of absorption by this very low, sparse crop.

b. 3D simulation of ‘‘full-canopy’’ (small h/z0) Elora
trials

Wilson (1980) reported four experiments in which
bead concentration profiles were observed at radius x
5 20 m downstream from a source at h 5 2.35 m, above
a mature corn crop (fetch 5 300 m; mean height hc 5
2.1 m; leaf area index LAI ø 2.8). Concentration pro-
files for the four trials were very similar, and experiment
1 (detailed on Table 2), which was performed during a
strong and steady wind under an overcast sky (i.e., near-
neutral stratification), can be taken as characteristic. Fig-
ure 9 gives the vertical profile of bead concentration
c/Q (s m23), averaged across three masts placed so as
to span the (visible) plume.

Throughout most of the depth of a tall canopy, it is
believed that the Lagrangian timescale GL is very large
(GL ø 0.3hc/u*, Coppin et al. 1986). Therefore since
the Langevin-class model has proved adequate to cal-
culate particle trajectories well above the plants, there
ought to be no fundamental difficulty in handling tra-
jectories near or within the canopy. Flesch and Wilson
(1992) found that an LS model for Gaussian inhomo-
geneous turbulence performed better (for tracer disper-
sion in a canopy) than models that attempted to account
for the (actually) non-Gaussian Eulerian velocity sta-
tistics. Thus simulations here use Thomson’s (1987)
well-mixed multidimensional model for stationary, in-
homogeneous Gaussian turbulence [Eq. (7), with an ad-
ditional Langevin equation for a V9 component uncor-
related with U9 or W; and with a superposed gravita-
tional settling velocity]. Appendix D details the param-

eterization of the wind and turbulence in the canopy.
The time step was specified as dt/Gp 5 0.1.

Upper leaves of plants near the source were literally
‘‘dusted’’ with beads, but deposition was not measured.
In simulations, probability of deposition onto the veg-
etation during time step Dt can be treated as the product
of the probability Pi that during that segment of its path
the particle should intercept canopy elements, and the
probability Pc of its resultant capture. Probability of
capture Pc must parameterize unresolved details of the
wind and particle trajectories near the plant parts, but
interception probability is proportional to the step length
(resolved velocity), and to the plant area density. As a
particle trajectory model resolves instantaneous particle
velocities, the probability of particle deposition PD over
any timestep Dt can be expressed as5

5 Whereas canopy dispersion models based on the advection–dif-
fusion equation (e.g., Legg and Powell 1979) necessarily parameterize
deposition in terms of the (knowable) mean horizontal and vertical
velocities, s(z) and wg.
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FIG. 9. Simulations of plume centerline concentration c/Q of glass
beads, in and above a corn crop (canopy height hc 5 2.1 m), at distance
x 5 20 m downstream from a point source at height h 5 2.35 m
(experiment 1, Wilson 1980). Variation in observed concentration at z
5 2.2 m, across the 3 masts, was about 625%. For all simulations,

5 5 ½, Pcz↑ 5 0. Heavy solid: b 5 2, Pcx 5 0.5, Pcz↓ 5 0.52 2A Ax z

(bars give standard error). Light solid: b 5 0, Pcx 5 0.5, Pcz↓ 5 0.5.
Long-dash: b 5 0, Pcx 5 0.95, Pcz↓ 5 0.5. Short-dash: b 5 0, Pcx 5
0.5, Pcz↓ 5 1. Dot-dash: b 5 0, Pcx 5 0.3, Pcz↓ 5 0.3.

PD 5 [ Pcx Az(z) 1 |Wp|Pcz Ax(z)]A(z)Dt(z),2 2U 1 VÏ p p

(14)

where A(z) is the leaf area density, Ax and Az are the
projection-factors thereof onto horizontal and vertical
planes, and Pcx, Pcz are capture probabilities for the
horizontal and vertical directions. The value Pcz can
logically be partitioned according to the sign of the ver-
tical velocity as

P , W . 0cz⇑ pP 5 (15)cz 5P , W , 0.cz⇓ p

Equations (14) and (15) are physically plausible, but
involve many parameters that are difficult to estimate,
as well as the profile of leaf area density, which was
not measured. The simulated plume-centerline concen-
tration profile was highly sensitive to the leaf area den-
sity profile,6 and to the alternative specifications of Wp

6 Results shown use that of Wilson (1988) for a corn canopy of
the same LAI at the same site.

or (more familiarly, but less justifiably) wg as the ve-
locity controlling probability of (vertical) interception
of plant surfaces. As indicated by Fig. 9, over the range
tested, simulations are more sensitive to variations in
the several (unknown) deposition parameters than to the
timescale reduction parameter b; that is, uncertainty in
regard to the trajectory model itself is eclipsed by un-
certainties w.r.t. deposition. And irrespective of the val-
ues of the deposition parameters, calculations produced
a strong concentration gradient ]c/]z near the top of the
canopy, in contrast to the observed profile, which does
not (in any obvious way) reflect the fact that the up-
permost observation level (z 5 2.2 m), lying slightly
below the mean canopy height (which was estimated
that day by sampling 35 plants distributed along the
bead plume; mean hc 5 2.1 m, standard deviation shc

5 0.08 m), was in a region of strong vertical gradient
in deposition probability (large ]s/]z and ]A/]z). Per-
haps this is an indication that the profile of leaf area
density assumed is unrealistic.

5. Conclusions

The ‘‘Langevin class’’ heavy particle trajectory model
used in many of the preceding simulations is not new,
having been used by Wilson et al. (1981) to simulate
bead dispersion experiments, and more recently by
Wang et al. (1995) in the treatment of aerial sprays.
Current findings confirm the usefulness of this simple
scheme for the calculation of an ensemble of heavy
particle trajectories released from ‘‘high’’ sources (large
h/z0) in the unperturbed atmospheric surface layer. The
RDM is clearly inferior, while the inertial particle model
is superfluous.

Some qualification of that last statement is warranted.
Very near ground, where t p/GL is not small, and particle
inertia reduces the particle velocity variance, trajectories
ought to be calculated using an inertial particle model,
for example, because a turbophoretic flux (Caporaloni
et al. 1975; Reeks 1983; Brooke et al. 1994) of particles
down the near-ground gradient in particle velocity var-
iance cannot occur in the Langevin-class model. But
there is an inevitable superficiality in the treatment of
wind and dispersion very near ground, within what Wil-
son and Flesch (1993) have termed the ‘‘Unresolved
Basal Layer’’ (UBL). Over the range of (u*, L, z0, h,
t p, wg) space covered in these atmospheric experiments,
the observations here considered do not permit to dis-
tinguish any disadvantage of the Langevin model rel-
ative to the inertial particle model, for calculations of
practical relevance. Evidently statistics of the particle
concentration- and deposit-clouds will most often be
calculated by a Langevin model to within an accuracy
of about 20%, except near the outer fringes of the pat-
tern.

Is this ‘‘good enough’’? It is probably fair to say that
micrometeorological techniques and theories are rarely,
in practice, more accurate than, very roughly, 20%—
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TABLE 2. Mean wind speed (* denotes intermittent stalling) and bead concentration profiles (masts A, B, C spanned plume centerline)
from Elora glass bead dispersion experiment of 15 Aug 1979. Duration of release 1145–1545 EST (T 5 240 min); sky condition, 8/10–10/
10 cumulus of little vertical development; standard deviation of vertical velocity at z 5 zref 5 2.5 m (sonic anemometer) s 5 0.86 m s21;ref

w

from eight consecutive 30-min mean wind speeds at z 5 4.23 m, mean wind speed s(4.23) 5 5.02 m s21 with s s̄/s 5 0.07 (std dev of 30-
min means divided by 240-min mean). Bead source strength Q ø 1.5 3 106 (beads per second).

z (m) U (m s21)
C(A)
(m23) C(B) C(C)

Cpavg
(m23)

Cpavg/Q
(s m23) Cpnorm

4.23
3
2.87
2.2
1.88
1.5
1.08
0.9
0.54
0.3

5.02

3.97

2.21

0.82*

0.84*

1080

870

640

320

630

530

430

320

810

540

550

350

840

650

540

330

0.00056

0.00043

0.00036

0.00022

1.3

1

0.84

0.51

for example, the common failure of surface heat- and
latent-heat fluxes measured by eddy correlation to ac-
count for available radiant energy (Blanken et al. 1998),
or disparities between surface-air trace-gas fluxes mea-
sured by alternative techniques.7 That broad limit to
attainable accuracy is in large measure due to inevitable
discrepancies between the ‘‘real world’’ circumstances
of measurements and idealizations inherent to the flow/
dispersion models and the measurement techniques, the
most important being idealizations of symmetry (e.g.,
horizontal homogeneity and/or stationarity), and of the
adequacy of one’s sampling of the (stochastic) system.
An ‘‘attainable accuracy’’ for the random-flight heavy
particle models of (only) about 20% is therefore not too
far out of line with what is practically achievable.
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APPENDIX A

Particle (vs Fluid-Lagrangian) Velocity
Autocorrelation Timescale

Taking two key particle parameters t p and wg, which
suffice to characterize the simplest types of particles,
and two fluid turbulence parameters (s, GL), we have
two nondimensional ratios (t p/GL, wg/s), and if we con-
sider t p/GL to be small enough, these two notional lim-
iting cases:

1) If t p/GL K 1 and wg/s K 1, the driving velocity

7 One may easily cite exceptions. This figure is meant to apply,
not to instrumental limitations (e.g., achievable accuracy in measuring
a mean vertical temperature difference), but to areally representative
micrometeorological process rates, such as evaporation from a large
lake or field, or wind reduction by a long shelterbelt, etc.

correlation reduces to the fluid Lagrangian correla-
tion, and the timescale Gp is simply Gp 5 TL.

2) If t p/GL K 1 but wg/s k 1, the particle is essentially
always falling through the fluid at its terminal ve-
locity, that is, it takes a ballistic trajectory through
the eddy. If the time step is Dt (KTL) then the particle
traverses distance wgDt through the eddy in each
time step, during which time the eddy velocity is
essentially unchanged. Then we can estimate a tem-
poral correlation timescale along the particle trajec-
tory as LE/wg where LE is the Eulerian length scale.

Following Csanady (1963), Sawford and Guest as-
sumed the correlation timescale Gp along a heavy par-
ticle trajectory to be an interpolation in wg/s between
these limiting cases,

TLG 5 . (A1)p 2
bwg1 1 1 2! s

Here b 5 sTL/LE is an empirical dimensionless constant
that in principle differs, by a factor of 2, for velocity
components parallel and perpendicular to the external
force.8 Sawford and Guest found that for dispersion lat-
eral to the external force, their trajectory model was in
reasonably good agreement with the laboratory exper-
iments of Snyder and Lumley (1971) if they set b 5 3
(but note the variance in terminology here relative to
their paper).

8 Because the external force (g) in the atmospheric experiments to
be considered is parallel to the most important fluctuation velocity
(Wp), when Gp is reduced according to Eq. (A1), the constant b has
(in principle) a value of one-half that found by Sawford and Guest
to be optimal for dispersion lateral to the external force; that is, in
the current case b 5 3/2 is consistent with Sawford and Guest. How-
ever, it is a very long stretch between the ideal turbulence envisaged
by those authors and the atmospheric case, and there is no reason to
treat b as other than (again) a flexible parameter of order unity.
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TABLE C1. Definition of five representative particle sizes to char-
acterize the size-distributions of the beads released in the Suffield
experiments, and the associated particle-release proportions ( f i) and
settling velocities (wgi). The five particle-size bins exclude about 5%–
10% of the mass actually released as very small or very large par-
ticles, the purpose here being simply to assess the sensitivity of sim-
ulations to there being a size spectrum of some width. Data are given
for beads with mass mean diameters d0 5 (107, 49) mm, for which
mass mean terminal velocities given by Walker (1965) were wg0 5
(0.58, 0.14) m s21.

Bin (i) Range (mm) d (i) f(i), % wg(i), m s21

1
2
3
4
5
1
2
3
4
5

95–100
100–105
105–110
110–115
115–120
42–45
45–48
48–51
51–54
54–57

97.5
102.5
107.5
112.5
117.5

43.5
46.5
49.5
52.5
55.5

13
33
30
18

6
19
28
26
18

9

0.48
0.53
0.58
0.64
0.69
0.11
0.13
0.14
0.16
0.18

APPENDIX B

Surface-Layer Scales and Parameterization of
Velocity Statistics for the Suffield Experiments

Outside (any) roughness sublayer, the state of the hor-
izontally homogeneous atmospheric surface layer is
characterized by scales u*, L, z0, and d (friction veloc-
ity; Monin–Obukhov length; roughness length; and
boundary layer depth, here unknown, but not critical).
Best fit surface layer scales u*, L were determined for
the 12 Suffield trials that Walker labeled A–L, using the
(Nu # 5) measured mean wind speed differences (Du m),
and the (NT 5 1) measured mean vertical temperature
difference (DTm). This was accomplished by adopting
the standard Monin–Obukhov similarity theory for the
vertical profiles of mean wind speed (u) and temperature
(T)

k z ]u zy 5 w and (B1a)m1 2u ]z L*

k z ]T zy 5 w (B1b)h1 2T ]z L*

with von Kármán’s constant ky 5 0.4. Following Dyer
and Bradley (1982), it was assumed that for unstable
stratification the universal functions are

21/4 21/2z z
w 5 1 2 28 , w 5 1 2 14 , (B1c)m h1 2 1 2L L

while for stable stratification

z
w 5 w 5 1 1 5 . (B1d)m h L

Integration between any pair of levels permits to deduce
a theoretical temperature difference DT th and wind
speed difference Du th, for any trial value of u*, T*. For
each such ‘‘trial state,’’ a residual was defined as R 5
(1/du2) S (Du m 2 Du th)2 1 (1/dT 2)(DTm 2 DT th)2,
where the normalizing factors du (50.05 m s21) and dT
(50.2 K) give relative weight to wind speed and tem-
perature errors, and were given these values rather ar-
bitrarily as representing reasonably realistic figures for
instrument accuracy. Table (1) gives details of the trials,
and the values of u*, L corresponding to the smallest
profile-fit residual R. The values given for roughness
length z0 were obtained by least squares fit to the ob-
served wind profile, after having first optimized u*, L.
These fitted MO profiles generally agree very closely
with the reported profiles, and parameters [e.g., z0, and
the wind speed at source height u(h)] derived from them
by Hage.

For the particle trajectory simulations of section 3,
the stability-corrected mean wind profile u 5 u(z) was
specified according to Monin–Obukhov similarity (as

above). The standard deviation for vertical velocity was
specified as (Kaimal and Finngan 1994, p. 16)

 1/3z
1.25 1 2 3 L , 01 2 Lsw 5 (B1e)

u z* 1.25 1 1 0.2 L . 0, 1 2L

while, in the few cases where U9 was included, the
oversimplification su 5 2u* was applied.

The Lagrangian timescale, or rather the equivalent
compound variable C0«, was parameterized as

 1/4z z
1 2 6 , L , 01 22 2s L2s ww 5 T (z) 5 (B1f)L 21C «0 z z
1 1 5 , L . 0. 1 22s Lw

This was found by Wilson et al. (1981) to result in good
LS simulations of the Project Prairie Grass observations
of tracer dispersion, across a wide range in stratification
[Wilson and Shum (1992) reexamined and confirmed
that finding after introduction of the wmc had clarified
LS model construction].

In the neutral limit, the above choices reduce to sw/u*
5 b 5 1.25, and TL 5 az/sw with coefficient a 5 ½.
Assuming for the neutral ASL that « 5 /(ky z) with3u*
ky 5 0.4, then a is related to the universal Kolmogorov
coefficient C0 according to

332s s k kw w y y3a [ 5 2 5 2b , (B1g)1 2C «z u C C0 0 0*

and the current choices are consistent with C0 5 3.1.
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Here, C0 has been treated as an optimizable coefficient
by most authors of LS models, in a manner equivalent
to the optimization by Wilson et al. of a. Du et al. (1995)
attempted to once and for all ‘‘fix’’ the value of C0 by
application of LS models to tracer dispersion experi-
ments from the laboratory, but different authors contin-
ue to report as optimal, values quite far from the 3 6
0.5 recommended by that study. Some of the authors
(e.g., Edson and Fairall 1994) who continue to calibrate
ASL trajectory models explicitly in terms of a (rather
than C0), prefer that value (a ø 0.3) that derives from
equating the nominal far field mass diffusivity TL to2s w

the neutral-limit eddy viscosity K 5 ky u*z, an identi-
fication that is supported by some of the surface-layer
flux-gradient experiments on heat, momentum, and va-
pour transport, for example, Dyer and Bradley (1982),
but leads to poor agreement with the Project Prairie
Grass observations (and others).

APPENDIX C

Accounting for the Particle Diameter Distribution
in the Suffield Trials

Although the actual size distribution of the beads re-
leased was reported, deposit density D0 was based on
assigning to each particle deposited the same mass
(Hage 1961). Consequently reported D0 is ‘‘subject to
errors due to the systematic decrease of mean particle
diameter with distance from the source.’’ Hage sug-
gested (on the basis of measurements) that this error
was probably negligible near the position of maximum
deposit density, but might be up to 30%–40% (error in
reported D0) near the 5% and 95% cumulative mass
limits of the deposit curve.

It is not possible retrospectively to determine the
(true) mass-deposition density. However, it is perfectly
possible to reproduce the error in D0, however large or
small that may be, in simulations; one need only sub-
divide the size spectrum into a number of classes (la-
beled ‘‘i’’), release the proper fraction f i 5 Ni/NP of
particles in each such class (S i Ni 5 NP is the total
number of trajectories calculated), apply the appropriate
settling velocity wgi, and count as if all particles had
equal mass.

To assess the importance of the particle size distri-
bution, the following procedure (which could be refined
for higher fidelity) was used to determine the number
fraction f i 5 Ni/NP of particles to be released in each
size class, in order to permit to more carefully represent
the trials with the (nominally) 107 mm beads. A fourth-
order polynomial,

CM 5 a0 1 a1d 1 a2d2 1 a3d3 1 a4d4,

provided a good fit to the reported Cumulative Mass
(CM) versus diameter (d) tabulations (Hage’s Table 2;
Walker’s Table 1) over a diameter range encompassing
more than 90% of the mass released; for the 107-mm
and (in brackets) 49-mm beads, the coefficients were

a 5 73 555.9 (6959.15)0

a 5 22618.79 (2492.675)1

a 5 34.664 (12.3928)2

a 5 20.202 23 (20.128 782)3

a 5 0.000 439 3 (0.000 455 2).4

Differentiating, one obtains a function m 5 m(d) giv-
ing the mass fraction released per unit diameter range.
Now of course, mass per particle varies as d3, so the
number of particles of any given diameter released per
unit mass (of particles of that size) released, varies as
d23. Then

n(d) 5 d23m(d) 5 a1d23 1 2a2d22 1 3a3d21 1 4a4,

is proportional to the number of particles released per
unit diameter increment. Five particle-size bins were
designated (Table C1), the number fraction of particles
to be released for each bin was determined from n(d),
and each bin (i) was assigned a ‘‘corrected’’ settling
velocity

wgi 5 wg0 / ,2 2d di 0

where wg0 is the figure given by Walker (1965) for the
mass mean terminal velocity corresponding to mass
mean diameter d0.

APPENDIX D

Parameterization of Velocity Statistics in a
Plant Canopy

Mean horizontal wind speed was parameterized as


z

s(h ) exp g 2 1 , z # hc c1 2 [ ]hc
s(z) 5 (D1a)

u z 2 d*s(h ) 1 ln , z . h , c c1 2k h 2 dy c

where it was assumed that d/hc 5 0.67. Speed at canopy
height s(hc) was inferred from the measurement s(4.23
m) 5 5.02 m s21, assuming friction velocity u* 5

/1.25 5 0.69 m s21 (thus s(hc) 5 2.59 m s21, s(hc)/u*
refs w

5 3.8). By requiring the in-canopy exponential profile
to fit the observed wind speed at z 5 1.88 m, g 5 1.5.

Velocity standard deviations and shear stress were
parameterized as
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z

refs 0.2 1 0.8 , z # h u,w c1 2hc
s (z) 5 (D1b)u,w 

refs , z . h u,w c

and

 z
1, $ 0.9

hct(z) z z
5 0.3 1 4.67 2 0.75 , 0.9 . $ 0.75

2 1 2u h hc c*
z z0.3 exp 7 2 0.75 , 0.75 .1 2[ ]h hc c

(D1c)

while the Lagrangian timescale was specified as

h 0.5(z 2 d)cG 5 max 0.3 , . (D1d)L [ ]u sw*
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