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ABSTRACT

To evaluate Reynolds-averaged Navier–Stokes (RANS) models of disturbed micrometeorological winds,
steady-state computations using a second-order closure are compared with observations (see Part I) in which
the surface layer wind was disturbed by a long, thin porous fence (height h 5 1.25 m; thickness dx ø 1 mm).
Starting with the case of neutral stratification and normal incidence, it is shown that low-resolution RANS
simulations (streamwise grid interval Dx/h 5 1) produce reasonably good transects of mean wind speed, though
with an ambiguity (or nonuniqueness) of at least 10%–15% of the amplitude of the relative wind curve, mainly
arising from sensitivity to the choice of the solution mesh. For nearly perpendicular flows, the measured influence
of stratification (stable or unstable) is to diminish the amplitude of the relative wind curve (i.e., windbreak is
less effective), an effect that is replicated very well by the simulations. Obliquity of the incident wind, like
stratification, also correlates with poorer shelter, but the computed response of the relative wind curve to obliquity
is excessive. As for higher-order wind statistics, computed transects of velocity standard deviations compare
poorly to those observed. Therefore, if this disturbed flow may be taken as representative, then caution must
be recommended should it be thought that RANS-type models might be suitable (i.e., accurate, as well as
convenient) for computing the disturbed wind statistics (typically mean velocity, shear stress tensor, and turbulent
kinetic energy dissipation rate) that are needed to ‘‘drive’’ modern dispersion models in the complex wind
regimes that must be confronted in such contexts as urban dispersion, or the wind migration of pollen.

1. Introduction

The disturbance to the mean winds engendered by a
long, straight windbreak presents a well-defined, two-
dimensional flow that, like the step change in surface
temperature or surface roughness, is a useful diagnostic
for the generality of our understanding of micromete-
orology, and more specifically for computational fluid
mechanics. Although there might be some practical val-
ue to a capacity to confidently and accurately model
shelter flows, perhaps the greater importance of shelter
simulations lies in what we can learn from them of the
viability and objectivity of computational fluid me-
chanics, which has assumed an influential role in society
regarding environmental planning and regulation.

The aim of this paper is to establish whether the dis-
appointing performance of steady-state Reynolds-av-
eraged Navier–Stokes (RANS) models for the simula-
tion of neutral winds about multiple parallel shelter
fences was an anomaly, or whether we indeed have
‘‘bumped against a boundary, between the do-able and
the not do-able, for RANS models, in micro-meteorol-
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ogy’’ (Wilson and Yee 2003). New simulations, using
RANS models with second-order closure, will be com-
pared with the observations of Wilson (2004, hereinafter
Part I), wherein a stratified surface layer encountered a
long fence at oblique incidence. Although it has been
shown (Wilson 1985, hereinafter W85; Wang and Takle
1995b) that neutral winds at perpendicular incidence are
simulated quite well even by first-order closures, the
present observations address the effects of the stability
and obliquity of incidence.

Simulations of this paper are distinct from the oblique
windbreak computations of Wang and Takle (1996) in
several respects: Wang and Takle considered windbreaks
of finite width, only in the neutral case, and used a single
eddy viscosity (K) closure. Tailoring a first-order clo-
sure to account for stratification offers certain perplex-
ities, which admittedly could be overcome, but at the
outset it was decided instead to here examine second-
order closures, on the principle that the role of strati-
fication thereby enters more naturally. Second-order clo-
sures ‘‘are calibrated against certain test situations, just
like the first-order models, so we can be assured that
approximately the correct amounts of momentum, heat,
etc. are being transported’’ (Lumley 1979). In principle,
because they make no presupposition that the mean mo-
mentum flux must run down the mean velocity gradient,
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FIG. 1. Ellerslie, AB, Canada, windbreak experiment (spring,
2003). A view to the northeast showing the plastic fence (height h
5 1.25 m), a three-dimensional sonic anemometer (centered at z 5
2 m), paired cup and 2D sonic anemometers, and thermometer intake
shields. Periods with winds approaching the tower from this direction
were discarded.

FIG. 2. A cut-out sample of the Tensar plastic windbreak. Scale is
numbered in centimeters, and the semimajor axis of the pores mea-
sures about 2.3 cm. In field use the semimajor axis is parallel to
ground.

they have a wider span of applicability than K closures,
and indeed Launder’s (1989) assessment was that ‘‘sec-
ond-moment closure offers a far more reliable approach
to predicting complex flows than any eddy-viscosity-
based model.’’ Earlier opinion had not always been so
positive (e.g., Lumley 1989, loc. cit.: ‘‘it is usually
found that the results . . . are not a substantial improve-
ment’’ over simulations using K theory).

Before looking at one-dimensional solutions (equi-
librium vertical profiles for undisturbed flow) and wind-
break simulations, formulation of the second-order clo-
sure model and the numerical method used for its so-
lution will be covered. Because the closure assumptions
are well known, emphasis will be placed on the novel
aspects, that is, parameterization of the drag of the fence
in oblique winds and formulation of the equations in a
coordinate system in which orientation of the mean wind
is arbitrary.

2. RANS computational wind models

The experimental shelter flow (Figs. 1 and 2) involved
a straight, 45% porous plastic fence of height h 5 1.25

m and length Y 5 114 m, exposed on a uniform plain
of grass (mean roughness length z0 5 0.019 m). The
resistance coefficient of the fence, deduced from the
pressure drop observed across a section of the material
that had been mounted so as to block a uniform wind
tunnel stream, was kr 0 5 2.4.

The numerical simulations treat this windbreak flow
as occurring within (i.e., disturbing) a constant stress
layer, and assume a unidirectional approach flow sat-
isfying the assumptions of the Monin–Obukhov simi-
larity theory (MOST). The (modeled) fence will be as-
sumed to be infinitely long, rigid, and oriented parallel
to the y coordinate. Flow statistics are assumed to be
independent of y; thus, although the simulations involve
all three mean velocity components (U, V, W), these
vary only along two space dimensions (two-dimensional
simulations). The component U will always be perpen-
dicular to the fence; thus, the numerical models must
be formulated such that both mean horizontal velocity
components may be nonzero upwind. A mean wind per-
pendicular to the fence will (herein) be denoted b 5 0.

a. Averaging

It has been acknowledged since Wilson and Shaw
(1977) that if the winds in a multiply connected space,
such as a plant canopy, are computed without resolving
the air/solid boundaries, the dependent variables must
be regarded as having been volume averaged, the op-
eration usually being indicated by ^ &, over a length scale
,a much larger than the scale of the solid parts. Wang
and Takle (1995a) and Lien et al. (2004) have shown
that for flows such as the present one, which are in-
homogeneous on scales greater than ,a, there is a logical
advantage to constructing statistics as the time average
of the spatial average, as opposed to the spatial average
of the conventional time average that is considered by
Raupach and Shaw (1982). The distinction between the
two averaging strategies essentially amounts to a point
of view, rather than a definitive step toward a rigorous
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formulation of a RANS closure; either way, heuristic
steps are unavoidable. Nonetheless, in this paper we
follow Lien et al. (2004), and regard the dependent var-
iables as being the time average of a local spatial av-
erage, because this interpretation clarifies the specifi-
cation of the sources and sinks of turbulent kinetic en-
ergy.

To illustrate the averaging, we may take as an example
the normal velocity component u 5 u(x, y, z, t). The
two basic decompositions are

u 5 u 1 u9 and u 5 ^u& 1 u0, (1)

where 5 0 and ^u0& 5 0. For clarity in understandingu9
the meanings of the terms it is helpful to substitute each
of the above definitions into the other, yielding the ex-
pressions

u 5 ^u& 1 u 0 1 u9 and u 5 ^u& 1 ^u9& 1 u0, (2)

where we presuppose that the averaging operations com-
mute, that is, [ ^ &; to reconstruct the local instan-^u& u
taneous velocity from the double average, two devia-
tions need to be added, their sum being

ũ [ u 0 1 u9 [ ^u9& 1 u0. (3)

Now, for convenience introducing the notation U 5
5 ^ &, in order to simulate a windbreak flow we^u& u

need to specify the governing equations for the contin-
uous spatial fields of the mean velocity Ui and other
statistics. In this paper we assume the time average is
of a sufficient duration that the resulting statistics are
time independent (steady-state RANS).

It is well known (Wilson and Shaw 1977; Raupach
and Shaw 1982; Finnigan 1985; Miguel et al. 2001; Lien
et al. 2004) that as a result of the volume averaging,
additional terms arise in the momentum equations and
formally account for drag on the solid. The result of
locally volume averaging the momentum equation is

]^u &^u & ]^u0u0&]^u & ]^p& gj i i ji 1 5 2 1 ^T&d 1 f ,3i i]t ]x ]x ]x Tj i j 0

(4)

where viscous momentum transport has been neglected,
p and T are the kinematic pressure departure and the
temperature departure from a hydrostatic and adiabatic
reference state, respectively, and fi , arising from the
volume integration, represents the drag of the solid ob-
stacles on the flow. Now, by introducing the expansion
^ui& 5 ^ i& 1 ^ & and time averaging, the steady-stateu u9i
mean momentum equation is

]^u &^u & ]t]^p& gj i i j
5 1 1 ^T&d 1 f . (5)3i i]x ]x ]x Tj i j 0

The modeling of the kinematic stress tensor

t 5 2^u9&^u9& 1 ^u0u0& (6)i j i j i j

is discussed later in section 2d, but, to anticipate, we

shall neglect the poorly understood component1 ^ &u0u0i j

and use the approximation

t ø 2^u9&^u9&. (7)i j i j

The normal stresses txx (etc.) will usually be denoted
by the more familiar 2 . In line with all this, and2s u

again following Lien et al. (2004), the instantaneous
resolved-scale turbulent kinetic energy is defined as

1
k 5 ^u9&^u9&, (8)i i2

and its time average

1 1
2 2 2k [ k 5 ^u9&^u9& 5 (s 1 s 1 s ) (9)i i u y w2 2

is the model’s turbulent kinetic energy (TKE) variable.
Please note the use of ‘‘k’’ here to simplify the notation

of Lien et al. Although this is the usual symbol fork
the TKE in numerical models, it carries a specific def-
inition here.

b. Mean momentum sink

The source term f i in Eq. (4) formally represents
viscous and form drag on the unresolved solid parts.
Because we are interested here in a thin, porous fence
taken to be perpendicular to the x axis and located at x
5 0, the drag f i must contain as a factor the delta
function d (x 2 0), having units (m21), and localizing
the momentum sink on the x axis. Conventionally f x is
modeled as the projection onto the x axis of a force that
is proportional to the square of the magnitude of the
mean (resolved) velocity.

It is more difficult to parameterize the instantaneous
vector drag force on a thin fence, than on an isotropic,
extensive distribution of solid parts, such as a plant
canopy (or wide, natural shelterbelt). In this paper we
shall for simplicity assume that, as a first approximation,
the instantaneous kinematic pressure drop along the x
axis across the fence can be expressed in terms of the
volume-averaged normal velocity ^u(0, y, z, t)& at the
fence, namely,

p 2 p 5 Dp(y, z, t) 5 k ^u& | ^u& |1 2 r0 (10)

(independent variables not shown for ^u&). Here, kr0 is
the resistance coefficient of the windbreak screen ma-
terial for a stream penetrating at normal incidence, and
can be considered to be defined by this equation [note
that Eq. (10) assumes the pressure drop is not affected
by any component of the volume (,a)-averaged velocity
parallel to the fence; the pressure drop p1 2 p2 is not
observable, because after the (implicit) local volume
averaging it is no longer clear what ‘‘across the fence’’

1 Lien et al. (2004) show that the shear stress may equivalently be
expressed as ti j 5 2^ & 2 ^ &, where the second term isu9u9 u 0u 0i j i j

known as the dispersive momentum flux.
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actually means]. This usage is consistent with the def-
inition of a resistance coefficient kr(a) for arbitrary an-
gle (a) of passage given by Laws and Livesey (1978),
a definition that scales the pressure drop on the square
of the wind speed (not, N.B., the square of the normal
component), and in terms of which kr 0 [ kr(0). Thus,
Eq. (10) applies irrespective of the angle of incidence
(b) of the mean wind and of the local (computed) angle
of passage through the fence [for clarification see Eqs.
(1) and (2) of Wilson and Flesch (2003)]. It is best
regarded as a plausible estimate of an apparent force on
the volume-averaged flow, a force oriented perpendic-
ular to the fence (or almost so) that vanishes away from
it.

Components of the local drag force that are parallel
to the fence cause discontinuities in the corresponding
velocity components across the fence (Taylor and Batch-
elor 1949). They can thus be written

2f (y, z, t) 5 ^u(0, y, z, t)&[^y(0 , y, z, t)&y

12 ^y (0 , y, z, t)&] and
2f (y, z, t) 5 ^u(0, y, z, t)&[^w(0 , y, z, t)&z

12 ^w(0 , y, z, t)&], (11)

where ^y(02, y, z, t)& and ^y(01, y, z, t)& give the parallel
velocity component on (respectively) the upwind and
downwind sides of the fence (etc.). Equation (11)
equates the parallel drag to the difference between the
instantaneous (kinematic) momentum flux densities on
each side of the fence; the normal velocity ^u(0, y, z,
t)& does change from one side to the other, because air
does not disappear within the fence. In Eq. (11) one
would like to regard ^ & as an area average in the
y–z plane, so as not to smear out the upwind/downwind
discontinuity. However, even if that unwanted condition
on their validity could be accepted, from the perspective
of a numerical model these estimates of parallel drag
are anyway problematic, because the finite grid length
Dx of computations will not permit to discriminate the
transverse velocities at x 5 (02, 01). Alternative ex-
pressions of Eq. (11) in terms of the entry and exit
orientations of the wind vector offer no advantage in
this respect. Thus, for simplicity, and because (unless
the wind blows parallel to the fence) it must be far
smaller than the normal component, the parallel com-
ponent of the drag will be neglected, and the instanta-
neous effect of the fence on the flow will be expressed

f 5 2k ^u& |^u& |d(x 2 0)s(z 2 h),x r0

f 5 0, and f 5 0, (12)y z

where s(z 2 h) is a dimensionless unit step function
localizing the drag to z /h # 1. If we substitute ^u& 5
^ & 1 ^u9&, perform a truncated binomial expansion onu
| ^u& | 5 , then time average, we obtain2Ï^u&

2 2f 5 2k (^u& 1 ^u9& )d(x 2 0)s(z 2 h), (13)x r0

(while y 5 z 5 0) or in the shorthand notationf f

2 2f 5 2k (U 1 s )d(x 2 0)s(z 2 h).x r0 u (14)

This is the same as the momentum sink used by W85
(p. 135), who found the term in the variance 52s u

to be unimportant (for the case h/z0 5 600; it could2^u9&
be more important for smaller h/z0). It bears repetition
that the numerical value of kr 0 is a property of the plastic
screen, and that in simulations one does not adjust its
value according to the prescribed approach wind direc-
tion (b) or the (computed) local wind direction at the
fence, arctan (V/U). Again, this stems from the as-
sumption that it is the normal component of the wind
that controls the pressure loss across the fence.

There is one necessary change to Eq. (14) that is
potentially important for the ‘‘practical numerics’’ of
solving the model equations; note that this momentum
sink is insensitive to the sign of the mean velocity U,
an obvious flaw (the drag must oppose the flow). This
is a consequence of the approximation of small fluc-
tuations that is implicit in the binomial expansion, and
needs to be fixed: one simply substitutes U | U | for U 2

in Eq. (14). This ensures a realistic feedback (i.e., drag
in the right direction) on large velocities, that may tran-
siently develop while iterating to a solution.

Wilson and Flesch (2003) gave momentum sinks in
the U and V momentum equations in a frame of ref-
erence whose x axis, unlike here, was aligned with the
mean wind direction far upwind from the fence. When
the equations given by Wilson and Flesch are rotated
into the present frame of reference, Eq. (14) results for

x, and as expected y 5 0.f f

c. Modeled mean momentum equations

The model mean momentum equations, expressed in
the shorthand notation, are

] ]
2 2(U 1 s 1 P) 1 (UW 2 t )u xz]x ]z

25 2k (U |U | 1 s )d(x 2 0)s(z 2 h),r0 u

] ]
(UV 2 t ) 1 (VW 2 t ) 5 0, andxy yz]x ]z

] ] g
2 2(UW 2 t ) 1 (W 1 s 1 P) 5 T, (15)xz w]x ]z T0

where P is the local disturbance in mean kinematic pres-
sure caused by interaction of the wind with obstacles,
and T (with a slight inconsistency in notation relative
to its earlier appearance) is now the mean temperature
deviation from a hydrostatic adiabatic reference state
(of course, these equations are valid in the Boussinesq
approximation). Because of the assumption ]/]y 5 0,
the momentum equations do not involve the along-fence
variance , but all other components of the stress tensor2sy

play a role, in principle, and their specification requires
that a turbulence closure be invoked.
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d. The Reynolds stress equation

If we may neglect the component ^ & of the com-u0u0i j

pound Reynolds stress that emerges from the joint time–
volume averaging, the momentum equations can be
closed by making approximations in the Reynolds equa-
tion, that is, the budget equation for 2tij 5 .^u9&^u9&i j

This latter is derivable in the usual manner by operations
with the instantaneous, locally volume-averaged mo-
mentum Eq. (4), and in its form, it differs from the
standard equation only in the presence of a termu9u9i j

arising from the momentum sink. Thus, assuming steady
state and making the usual assumption with respect to
the viscous terms at high Reynolds number, the stress
budget can be written (Lumley and Khajeh-Nouri 1974)

]
(U ^u9&^u9&)k i j]xk

]U ]Uj i5 2^u9&^u9& 2 ^u9&^u9&i k j k]x ]xk k

] ]^p9& ]^p9&
2 ^u9&^u9&^u9& 2 ^u9& 1 ^u9&k i j j i]x ]x ]xk i j

g 2
1 (^u9&^T9&d 1 ^u9&^T9&d ) 2 ed 1 e ,i i3 j j3 i j i jT 30

(16)

where

e 5 ^u9& f 9 1 ^u9& f 9 (17)i j j i i j

arises from the drag on the solid obstacles and is not
to be confused with the ordinary viscous dissipation e.
It is usual as a precursor to formulating closure ap-
proximations that the pressure term be expanded

]^p9& ]^p9&
P 5 ^u9& 1 ^u9&i j j i]x ]xi j

]^u9&] ] ]^u9& ji5 ^p9&^u9& 1 ^p9&^u9& 2 ^p9& 1j i 1 2]x ]x ]x ]xi j j i

T5 P 2 R . (18)i j i j

The first two terms, whose sum has been labeled ,TPij

represent ‘‘pressure transport.’’ The final term is called
the ‘‘pressure strain’’ or ‘‘pressure rate of strain’’ be-
cause it involves the fluctuating velocity gradient tensor.
This (Rij) is also known as the ‘‘redistribution term’’
because (in incompressible, i.e., nondivergent, flows) it
vanishes upon contraction (i 5 j) and so does not affect
the total TKE, while it acts to equalize the partitioning
of TKE into its components.

For the present flow about a long, porous planar bar-
rier, there is (by assumption) only a single nonzero com-
ponent of the drag fluctuation ,f 9i

f 9 5 2k d (x 2 0)s(z 2 h)x r0

3 (^u9&^u9& 1 2^u&^u9& 2 ^u9&^u9&), (19)

in contrast with the formulation of Lien et al. (2004),
which parameterizes the drag on a three-dimensional
array of cuboid buildings. Consequently it follows from
Eq. (17) that

2e 5 2k d (x 2 0)s(z 2 h)(4Us 1 2^u9&^u9&^u9&),xx r0 u

e 5 e 5 e 5 0,yy zz yz

e 5 2k d(x 2 0)s(z 2 h)(2U^u9&^w9& 1 ^w9&^u9&^u9&),xz r0

and

e 5 2k d (x 2 0)s(z 2 h)(2U^u9&^y9& 1 ^y9&^u9&^u9&),xy r0

(20)

in which the triple correlation terms, which (inciden-
tally) could permit the gain of resolved-scale kinetic
energy from the subfilter scales, have not been retained
in the numerical models (from here on we shall usually
suppress the ^ &, to simplify the notation). It is interesting
to note the absence of wake-conversion sinks in the
conservation equations for the variances , of the2 2s sy w

velocity components parallel to the fence. Of course
this follows from the assumptions [Eq. (12)] of the form
of the momentum sinks, but to the extent that those
assumptions are valid, the occurrence of a sink for 2s u

where there is none for [Eq. (20)] may in part explain2sy

the observation (Part I, their Fig. 16) that in the leeward
‘‘quiet zone’’ the variance of the normal component2s u

is reduced by a greater fraction and over a longer lee-
ward distance, than is the variance of the parallel2sy

component.
Lien et al. have stressed the absence in the equationk

(time-averaged resolved-scale kinetic energy) of any
source term representing gain of turbulent kinetic energy
from the mean kinetic energy (1/2)^ i&^ i&, and notedu u
the similarity in this regard of their more rigorous for-
mulation with Wilson’s (1988) heuristic spectral divi-
sion into large-scale kinetic energy (SKE) and wake-
scale kinetic energy (WKE), a separation that was jus-
tified by a presupposition that wake eddies must nec-
essarily be of such a (small) scale as to lie outside the
SKE spectrum.

e. Rao–Wyngaard–Coté second-order closure

Rao, Wyngaard, and Coté (hereinafter RWC) intro-
duced their closure in the context of modeling local
advection (Rao et al. 1974a,b; Bink 1996; Wilson et al.
2001). RWC is not very different from other common
second-order closures, and in particular it differs essen-
tially from the simplest of the closures of Launder et
al. (1975, hereinafter LRR) only in that it does not pa-
rameterize the ‘‘rapid’’ part of the pressure strain (there
are also habitually some differences in the specification
of closure coefficients, compensating the differences in
the equation sets in the sense that they optimally tune
the different closures to the same reference flow).

Rather than start from the decomposition given by
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Eq. (18), RWC instead rearranged the stress budget
equation by regrouping the turbulent transport and pres-
sure terms

] ]p9 ]p9
u9u9u9 1 u9 1 u9i j k i j]x ]x ]xk j i

] 2
5 u9u9 1 p9d u9i j i j k1 2]x 3k

]p9 ]p9 2 ]p9u9k ˜ ˜1 u9 1 u9 2 d 5 T 2 R .i j i j i j i j1 2]x ]x 3 ]xj i k

(21)

RWC modeled the transport term T̃ij by assuming

2 ]u9u9jiu9u9 1 p9d u9 5 2a tu9u9 , (22)i j i j k t k m1 23 ]xm

where at is a dimensionless coefficient and t 5 2k/e is
a constructed turbulence time scale. They modeled the
second term R̃ij as an isotropizing redistribution term,

c]p9 ]p9 2 ]p9u9 2i jku9 1 u9 2 d 5 u9u9 2 kd , (23)i j i j i j i j1 2]x ]x 3 ]x t 3j i k

where k is the TKE and the cij are dimensionless co-
efficients. All second-order closures include a term sim-
ilar to this one, attributed to Rotta, and considered to
parameterize the ‘‘turbulence–turbulence’’ terms in the
equation for the pressure strain (LRR; Launder 1989).

With these closure assumptions, the RWC model
equation for is2s u

2 2] ]s ] ]su u2 2 2 2Us 2 a ts 1 Ws 2 a tsu t u u t w1 2 1 2]x ]x ]z ]z

]U ]U c 2112 25 22s 1 2t 2 s 2 ku xz u1 2]x ]z t 3

2 2] ]s ] ]s 2u u2 a tt 2 a tt 2 e 1 e ,t xz t xz xx1 2 1 2]x ]z ]z ]x 3
(24)

where exx is the previously given source term (a TKE
sink) due to interaction of the flow with the fence, and
equations for the other variance components are anal-
ogous.

The RWC txz equation is

] ]t ] ]txz xz2 2Ut 2 a ts 1 Wt 2 a tsxz t u xz t w1 2 1 2]x ]x ]z ]z

]U ]U ]W ]W
2 25 2t 1 s 1 s 2 txz w u xz]x ]z ]x ]z

g c131 (u9u9 1 0.61T u9q9) 2 t0 xzT t0

] ]t ] ]txz xz2 a tt 2 a tt 2 e . (25)t xz t xz xz1 2 1 2]x ]z ]z ]x

Note that because txz 5 2 , the earlier-defined^u9&^w9&
exz is subtracted on the rhs of the txz equation, where it
had been added on the rhs of the equation.^u9&^w9&

Last, the RWC e equation is

] ]e ] ]e
2 2Ue 2 a ts 1 We 2 a tste u te w1 2 1 2]x ]x ]z ]z

e
5 [C (P 2 e ) 2 C e]e fd e1 2k

] ]e ] ]e
2 a tt 2 a tt , (26)te xz te xz1 2 1 2]x ]z ]z ]x

where

]U ]U ]V ]V
2P 5 22s 1 2t , P 5 2t 1 2t ,uu u xz yy xy yz]x ]z ]x ]z

]W ]W g
2P 5 2t 2 2s 1 2 (w9T9 1 0.61T w9q9),ww xz w 0]x ]z T0

and

1
P 5 (P 1 P 1 P ) (27)uu yy ww2

are the production rates of variance and TKE (q9 is the
fluctuation in specific humidity). The heuristic term e fd

5 exx/2 locally reduces the rate of e production in re-
lation to the amount by which TKE production at the
fence is offset by wake conversion, and was suggested
by Lien et al. (2004); a similar idea was proposed by
Green et al. (1992, 1994). Its effect, for the case of a
thin windbreak, is minor. To reduce finite-difference er-
rors, it is advantageous to transform Eq. (26) into an
equation for the product (ze), which is independent of
height in the reference state defined below.

Of course for simulations of the stratified surface lay-
er, the RWC closure entails many more equations, for
example, the heat flux budget equations andu9T9

, but these are closed using similar principles andw9T9
need not be reviewed; for details, see Wilson et al.
(2001) and other work cited there.

f. Specification of the RWC closure constants

Like others exploring second-order closures shortly
after the Kansas experiments, Rao et al. (1974a,b) pre-
supposed that the von Kármán constant ky 5 0.35. Later
analyses (e.g., Dyer and Bradley 1982) have supported
ky 5 0.4, with equality of the eddy diffusivities for
momentum, heat, and water vapor in the neutral limit.
The point is that if one were to insist on following
exactly the RWC specification of coefficients—and this
comment applies equally to replication of the Mellor
(1973) and the Lewellen and Teske (1973) studies—one
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would thereby commit to a formulation that is incon-
sistent with that adopted by most workers now in anal-
ysis of measurements, and in particular, with the analysis
of the experiment of Part I. The approach taken here is
to set ky 5 0.4, but otherwise follow the same logic as
the original proponents of a closure: some constants are
specified to tailor the modeled values of observed (nor-
malized) statistics to experimental values (e.g., the val-
ues of su,y,w/u* in the neutral limit); some few are ‘‘free’’
(e.g., in the RWC closure, the coefficient at multiplying
the transport terms, as well as the coefficients ce1, ce2

of the e equation, set by RWC as, respectively, ce1 5
1, ce2 5 2); and others (cij, ce) are constrained (as out-
lined below) by equations that require consistency of
the closure with a ‘‘reference flow,’’ here chosen to be
the neutrally stratified and horizontally homogeneous
constant stress (i.e., surface) layer, in the state of local
equilibrium (abbreviated ‘‘hh-NSL-le’’).

Following Rao et al. (1974a,b), without exception the
simulations using their closure used at 5 0.15; however,
in some calculations (where noted) the coefficients of
the e equation were varied from ce1 5 1, ce2 5 2. The
only other variation from the standard specification of
parameters usual with RWC was made to ensure that
the universal Monin–Obukhov function for heat should
have the limit fH(z /L) → 1 as | z /L | → 0 so that in
this neutral limit the turbulent Prandtl should be unity.

g. The reference flow

Let (u0, y0, w0) be the velocity vector in a frame
F0(x0, y0) aligned with the mean wind vector, and let
(u, y, w) be the velocity for an arbitrary orientation of
the coordinate system at angle b away from the x0 axis.
Velocities in the two frames are related by the trans-
formation

u 5 u cosb 1 y sinb and0 0

y 5 2u sinb 1 y cosb. (28)0 0

In the reference flow we assume the shear stress to
be constant, and parallel to the mean wind. Thus, the
single nonvanishing component of the kinematic shear
stress txz0 5 2 defines the velocity scale u* 5u9w90 0

. The reference flow is then defined asÏ2u w9 90 0

u* z
U (z) 5 ln , V 5 W 5 0,0 0 01 2k zy 0

2u9w9 5 2u*, y9w9 5 u9y9 5 0,0 0 0 0 0 0

2 2 2 2 2 2u9 5 c u*, y9 5 c u*, w9 5 c u*,0 uu0 0 yy 0 0 ww0

31 u*
2k 5 (c 1 c 1 c )u*, and e(z) 5 ,uu0 yy 0 ww02 k zy

(29)

where quantities that vary with height in the ideal neu-
tral surface layer (hh-NSL-le) are so designated (all oth-

ers are height independent), and (to repeat, in the present
work) ky 5 0.4. The normalized variances cuu0 (etc.) are
not to be confused with the coefficients cij introduced
in Eq. (23).

h. Definition of the reference flow in the arbitrary
coordinate system

Projecting the shear stress vector (recall assumed, in
so far as the reference flow is concerned, to be aligned
with the x0 axis) onto the arbitrary coordinate system
we have

2 2t 5 2u* 5 2u* cosb,xz u

2 2t 5 2u* 5 2u* sinb, andyz y

t 5 0, (30)xy

where u*u, u*y are introduced for convenience, and ev-
idently 5 1 . Similarly the components of4 4 4u u uu y* * *
the mean wind are

u* cosb z
U(z) 5 ln ,1 2k zy 0

u* sinb z
V(z) 5 ln , and1 2k zy 0

W 5 0. (31)

It is important here to emphasize that u* cosb ± u*u and
that u* sinb ± u*y, that is, that a prescription ]U/]z 5
u*u/(kyz) would be incompatible with the definition of
u*u. The relationships given above uphold the require-
ment that in the reference flow the production rate P and
dissipation rate e of TKE balance, that is,

3]U ]V u*
e 5 P 5 t 1 t 5 . (32)xz yz]z ]z k zy

Last, as the orientation of the coordinate system is
arbitrary, so too are the relative values of the normalized
variances cuu, cy y. However, one has definite ideas of
the respective values for 5 cuu0 and 52 2 2s u su y*
cy y0 in the case that the x axis is parallel with the2u*
mean wind, that is, V 5 0; typically we may expect (in
the neutral limit, and only very approximately) cuu0 ;
4, cy y0 ; 2, reflecting the fact that shear production
feeds the streamwise but not the transverse variance.
From Eqs. (28), the normalized variances for the arbi-
trary coordinate orientation are

2 2c 5 c cos b 1 c sin b anduu uu0 yy 0

2 2c 5 c sin b 1 c cos b. (33)yy uu0 yy 0

Thus, in the arbitrary coordinate system the reference
state is defined by Eqs. (31)–(33), and

2 2 2 2 2 2s 5 c u*, s 5 c u*, s 5 c u*,u uu y yy w ww
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1
2k 5 (c 1 c 1 c )u*uu yy ww2

31 u*
2[ (c 1 c 1 c )u*, and e(z) 5 . (34)uu0 yy 0 ww02 k zy

The RWC closure, like other second-order turbulence
closures, introduces a turbulence time scale (t) com-
puted from the numerical values of k and e,

2k k z 2kyt 5 → , (35)
2(ref )e u* u*

where the limit →(ref ) denotes ‘‘in the reference state.’’

i. Requiring the 1D equations to reproduce the
reference state

The coefficients entering into the governing equations
must be chosen so that the structure defined by Eqs.
(31)–(35) is embedded, in order that equilibrium sim-
ulations will generate exactly that state.

Beginning with the shear stress equations, and re-
calling that in the reference state (by requirement) the
shear stress is height independent, the budget for txz

reduces to

]U t xz20 5 w9 2 c . (36)13]z t

Upon substituting for t and writing 5 cww , txz 52 2s uw *
cosb, simplification yields2u*

2k
c 5 c , (37)13 ww 2u*

while the complete symmetry between u and y in the
arbitrary coordinate system implies c23 [ c13 (the co-
efficient c12 was given the same value). Similarly, in the
reference state the budget for reduces to2s u

2]U 2 s 2 (2/3)ku0 5 t 2 e 2 c , (38)xz 11]z 3 t

and substitutions result in
2n(6 cos b 2 2)

c 5 , (39)11 3c 2 nuu

where n 5 2k/ . The analogous balance for re-2 2u sy*
sults in

2n(6 sin b 2 2)
c 5 , (40)22 3c 2 nyy

while for , which is not sensitive to choice of the2sw

coordinate orientation, the desired balance is assured
provided

2n
c 5 . (41)33 n 2 3cww

Last, in the reference state, the e equation reduces to

] ]e e
22a ts 5 (c P 2 c e), (42)te w e1 e21 2]z ]z k

with P 5 e (note that unlike in all the other equilibrium
equations, in this case the diffusion term does not vanish
in the reference state). Substitutions result in the re-
quirement that

2(c 2 c )e2 e1a 5 . (43)te 2 2k c ny ww

Please note that the equations determining c11, c12,
c33, c13, . . . must be provided with one’s specifications
for observable statistics (like / ) but do not depend2 2s uw *
on one’s choice for ky. On the other hand the transport
coefficient ate (playing the role of ce in the usual jargon
of the e equation, with ce 5 2ate) is constrained by Eq.
(43) to depend on ky (and the ‘‘free’’ coefficients ce1,
ce2, as well as the observables sw/u*, k/ ), while owing2u*
to the fact that in the reference state the balance equa-
tions for the components of the stress tensor are local
(i.e., diffusion terms vanish), the other transport coef-
ficient at is free.

For further details in the specification of coefficients
of the RWC closure, please see Wilson et al. (2001), in
particular as regards the ‘‘tuning’’ of the equations that
determine the temperature and humidity flux and vari-
ance fields, where a coefficient d3 takes on a value com-
patible with the desired value of the turbulent Prandtl
number (the present choice being unity) in the reference
state.

j. Launder–Reece–Rodi closure

For the neutral, perpendicular case only, the shelter
observations and the computations using the RWC clo-
sure will be compared with alternative computations
from the more widely used second-order closure of
LRR. As far as equations, numerical method, and clo-
sure constants are concerned, the present simulations
using LRR follow W85 exactly. In particular, they use
LRR’s simplified model of the pressure strain

]u9 ]u9jiR 5 p9 1i j 1 2]x ]xj i

e 2 2
5 2c u9u9 2 kd 2 c P 2 Pd , (44)1 i j i j 2 i j i j1 2 1 2k 3 3

where the second term is known as ‘‘isotropization of
production’’ (LRR), and the production rates are given
by Eq. (27). The sum of turbulent and pressure transport
terms was modeled as Eq. (22), this being attributed to
Daly and Harlow (1970). According to Launder (1989)
‘‘The role of pressure fluctuations in modifying the level
of the second moments is arguably the liveliest debating
point in second-moment closures’’ whereas outside the
near-wall sublayer where viscosity is important ‘‘few of
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the important anomalies one finds in predictions of in-
homogeneous flows can be traced to weakness in the
diffusion model,’’ that is, in Eq. (22).

In order to connect with the usual notation for the
LRR model please note that RWC’s coefficient at and
LRR’s are connected by 5 2at, and so there is ac9 c9s s

small numerical difference in the treatment of the trans-
port term in that the present LRR simulations follow
LRR and set 5 0.25 (except in a single comparativec9s
case noted in Fig. 6), while the RWC simulations follow
RWC and set at 5 0.15. The LRR e equation is identical
to that of RWC, with only a notational difference (ce 5
2ate connects the LRR terminology on the left with the
RWC terminology on the right). Irrespective of the ter-
minology, ce (or ate) is determined from the other co-
efficients (ce1, ce2, and chosen values for the equilibrium
variances) by requiring that the set of equations cor-
rectly reduce to the equilibrium state. In summary then,
the ‘‘tuning’’ of the LRR closure coefficients is here
identical to that given by W85 (his Table 1), with the
same input values of the observables ( / 5 2.87,2 2s uu *
etc.).

k. Details of numerical method

Because due to the symmetry ]/]y 5 0 the V field is
not linked to the mean pressure field, it was not nec-
essary to offset the V grid points on the y axis relative
to P grid points; hence, V was collocated with U and
the mean scalars.

Users of the semi-implicit method for pressure-linked
equations (SIMPLE)-type solution procedure may have
had the experience that, having functioned very satis-
factorily for a certain grid, the algorithm may incom-
prehensibly fail to converge when one alters Dx or Dz
or the grid aspect ratio Dz/Dx; that is, on any given grid,
convergence is not assured a priori. More important,
repeatability of any simulation hinges on precise rep-
lication of the grid (except if grid independence is at-
tained, and it has not been here), so that it is not pedantic
to provide full details. A staggered grid identical to that
defined by W85 was used, its inflow and outflow bound-
aries chosen to run through U (5V) grid points, while
the ground and the upper boundary ran through W grid
points. The scalars (mean potential temperature T and
mean humidity Q) were collocated with U (and V),
while all second-order quantities were placed at the in-
tersection of the vertical planes of U grid points with
the horizontal planes of W grid points. Vertical W planes
lay equidistant from vertical U planes, so that (unless
grid size Dx 5 constant) U grid points were not x-wise
central in their control volumes. On the other hand,
horizontal U planes were centered between the hori-
zontal W planes. Details of domain size and grid length
will be given for each simulation.

l. Boundary conditions

For the RWC simulations inflow profiles of the ve-
locity statistics were specified as the 1D (i.e., equilib-
rium) solution, for prescribed approach flow state and
orientation (u*0, L, z0, b), while for the LRR closure
(neutral, perpendicular case only) ideal analytical pro-
files were imposed2 (semilogarithmic mean wind profile,
constant shear stress, constant velocity variances). In all
reported simulations, it was assumed that all properties
satisfy ]/]x 5 0 at the downwind boundary; exploratory
computations with enforced recovery to the equilibrium
state indicated that this made negligible difference, and
in particular was not a cure all for a deficient model.

At the upper boundary (z 5 ZT), mean vertical ve-
locity W 5 0 and the fluxes of U and V momentum txz

and tyz were held constant at their equilibrium values,
driving the modeled flow. Velocity variances along ZT

were directly specified as 5 cuu (etc.).2 2s uu 0*
As is customary, it was assumed that a shallow equi-

librium wall layer exists at the lower boundary. Thus,
the necessary surface U and V momentum fluxes were
computed from the mean velocities UP and VP at the
lowest velocity grid point (height zP), according to

2 2k ÏU 1 V Vy P P Pu* 5 , b 5 arctan ,, , 1 2ln(z /z ) UP 0 P

2 2t 5 2u* cosb , and t 5 2u* sinb , (45)xz, , , yz, , ,

where , denotes a local surface value. Similarly the
needed surface values for other turbulence properties
were taken as

2 2 2 2s 5 c u* , s 5 c u* ,u, uu , y, yy ,

3u*,2 2s 5 c u* , and (ze) 5 . (46)w, ww , , ky

In all simulations it was assumed txy 5 0 along z 5
(z0, ZT). Boundary conditions for thermodynamic var-
iables followed the same principles outlined above (for
details see Wilson et al. 2001).

m. Other details

Patankar’s power-law interpolation scheme was used
to estimate the coefficients linking neighboring grid-
point values. As in W85 a simulation was considered
to have converged if the computed net momentum flux
across the boundaries into the computational domain
balanced the drag on the fence, to within 1% or better.

As outlined in Part I [his Eq. (11)] under the as-
sumption that velocity fluctuations are small relative to

2 When analytic inflow profiles are used in lieu of an appropriate
1D numerical solution, there is a danger of incompatibility of the
inflow with the finite-differencing scheme, leading to a possible com-
ponent in the modeled flow disturbance that is driven by that incom-
patibility. As detailed by W85, no such problem arose with the LRR
scheme.
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FIG. 3. Equilibrium profiles of velocity statistics from the numerical model with RWC closure, for the neutral case (u
*

5 0.4 m s21,
z0 5 0.019 m) with b 5 308.

the magnitude of the mean velocity, mean cup wind
speed can be approximately related to the mean velocity
components and standard deviations as

2 2u9 1 y9
S ù Q 1 1 , (47)

21 22Q

where Q2 5 2 1 2. This formula is liable to be in-u y
accurate, however, in the very circumstances in which
the distinction between S and Q could be important.
Therefore, unless otherwise stated, in the simulations to
follow the term in the velocity variances has been ne-
glected, so that (the model’s) cup wind speed has been
approximated as S 5 Q 5 , which has the2 2Ïu 1 y
advantage that if the variances are poorly computed,
they will not adversely affect the model’s estimate of
the cup wind speed.

The second component 2kr 0 of the drag term [Eq.2s u

(14)] in the U momentum equation has not been in-
cluded in simulations to be shown; its computed effect
was small enough (less than 5%) to warrant that it be
omitted, because the accuracy of (computed) at the2s u

fence is in any case doubtful.

3. Computed equilibrium flows

a. Neutral approach flow

Rao et al. (1974a,b) prescribed ky 5 0.35, su/u* 5 2,
sy /u* 5 sw/u* 5 5 1.32, ce1 5 1, and ce2 5 2.Ï1.75
With these inputs the present RWC code reproduces ex-
actly their c11 5 c22 5 c33 5 6.7, c13 5 13.2, and ate 5
0.165. However, for reasons given earlier, for the present

simulations we assume ky 5 0.4. And once having decided
to depart from the original coefficients, it seemed appro-
priate to specify the equilibrium variances in the ranking
they are usually reported, namely, . . (as2 2 2s s su y w

seen in a frame aligned with the mean wind). Therefore,
the present simulations using the RWC closure used cuu0

5 4, cyy 0 5 1.93, and cww0 5 1.56, corresponding to
su,y,w/u* 5 (2, 1.4, 1.25) and 5 3.75. The main2k /u*
virtue of this arbitrary choice is that it follows Bink
(1996), in his comprehensive and critical comparison of
the RWC model with observations of dry to moist land
flow. Other input constants were the equilibrium values
for the ratios

2u9T9 T9
5 4 and 5 5.29, (48)

u*T* u*T*

where T* 5 2QH/(rcpu*) is the Monin–Obukhov scale
for the temperature fluctuations, derived from the ki-
nematic surface heat flux density QH 5 rcp . In allw9T9
simulations the surface resistance to evaporation was
specified as infinite (dry system), and so the equations
involving humidity play no role.

Figure 3 shows the computed equilibrium velocity
statistics for the neutral condition, u* 5 0.4 m s21 , z 0

5 0.019 m, and b 5 308. This (reference flow) is the
approach flow for neutral RWC simulations of the El-
lerslie windbreak observations at 308 obliquity. Note
the semilogarithmic profiles of the mean wind com-
ponents, the height-independent shear stress compo-
nents, and the e } z21 profile of dissipation rate. This
last feature, assured by working with an equation for
ze (rather than e), is the key to the attainment of (length
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FIG. 4. Computed equilibrium profiles of mean velocity, velocity variance, and temperature, under unstable strati-
fication (u

*
5 0.3 m s21, L 5 29.1 m) and with b 5 18. Also shown are Monin–Obukhov profiles [mean wind and

temperature following Dyer and Bradley (1982); vertical velocity variance following Kaimal and Finnigan (1994, p.
16)] for the given conditions. Grid: Dz 5 0.25 m, z # 50 m. Closure constants: ce1 5 1, ce2 5 2, at 5 0.15, and a1

5 1/2, a2 5 21/2, or a1 5 a2 5 0 (with negligible impact of this simplification on other profiles). The variance
profiles are similar to the corresponding results of Bink (1996) and do not compare well to standard Monin–Obukhov
curves.

scale) k/e } z, which in conjunction with feedbacks
that assure height constancy of the stresses, results in
]/]z(U, V ) } 1/z.

Regarding the approach flow in simulations using
LRR, as earlier mentioned this was simply imposed (i.e.,
not a numerical 1D solution). Equilibrium variances fol-
lowed W85, that is, cuu0 5 2.87 and cyy0 5 cww0 5 1.69
implying su,y,w/u* 5 (1.69, 1.3, 1.3) and k/ 5 3.13.2u*
The variance fields (in reality) are not invariant across
neutral conditions, and, relative to the shear stresses,
they do not (anyway) exert a strong influence on the
mean velocity field. Thus, these differences (between
the approach flows for the neutral RWC and the LRR
simulations) are inconsequential.

One need have no hesitation in stating that, in the
neutral case, the model fields far upwind from the wind-
break fence are realistic.

b. RWC’s stratified equilibrium (approach) flow

Figure 4 compares computed equilibrium profiles for
a strongly stratified case (L 5 29 m) with standard
empirical Monin–Obukhov profiles. The distinction be-
tween the two modeled temperature profiles lies in the
incorporation (or not) of a slight modification of the
thermodynamic equations, in particular, the equa-2T9

tion, by Bink (1996) and others earlier. Judging from
the profiles shown, the original RWC closure is better
in that its Monin–Obukhov (MO) function for temper-
ature fT(z/L) is in better accord with that observed
(though here it must be admitted that from the many
field experiments, many fT functions have been pro-
posed). Yet even so it seems warranted to complain that
the RWC second-order closure produces Monin–Obu-
khov functions fu(z/L), fT(z/L), and fuu(z/L) for the
mean wind, temperature, and variance that simply do
not agree very well with the standard empirical func-
tions. This is disappointing but not surprising (see Bink
1996, p. 113; Wilson et al. 2001). It raises the question,
would it have been better to have used a different sec-
ond-order closure?

One’s immediate reaction is: probably not, because
the closure assumptions of RWC are conventional, that
is, common to the well-known closures. On the other
hand, we have reports of successful simulations of the
Monin–Obukhov functions by Lewellen and Teske
(1973) and by Mellor (1973). Because this paper at-
tempts to say something of generality on the usefulness
of second-order RANS closures, the possibility that
RWC is inferior needs to be pursued.

On close inspection one notes that on the unstable
side, Mellor’s fu does not agree well with observa-
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FIG. 5. Observed and computed relative wind speed S/S04 upwind
and downwind from the Bradley–Mulhearn windbreak (neutral strati-
fication, perpendicular approach wind; h/z0 5 600, kr0 5 2) at z/h 5
(0.38, 1.88); S04 is the mean wind speed at z 5 4 m upwind from the
windbreak. ‘‘Standard grid’’ refers to a particular, nonuniform and low-
resolution grid used by W85; other simulations on refined uniform grid
(Dx/h 5 1, Dz/h 5 0.1). RWC simulations (ce1 5 1, ce2 5 2); LRR
simulations and ‘‘RWC alt. coeffts,’’ (ce1 5 1.44, ce2 5 1.92).

tions—this would imply a divergence of his simulated U
profile away from the MOST profile with increasing z/L,
though the profile itself is not shown. On the other hand,
Lewellen and Teske’s computed profile for fu(z/L) is ex-
cellent over 22 # z/L # 2.

Lewellen and Teske used the second-order closure of
Donaldson (1973), which features (i) Rotta-type iso-
tropization terms representing pressure strain and anal-
ogous terms in scalar budget equations, introducing
length scale L1; (ii) a gradient-diffusion-type formula-
tion for turbulent transport (length scale L2) that has
correct tensor symmetry (this distinction relative to the
LRR and RWC closures used here is irrelevant to the
point, for in the 1D case only the vertical gradient con-
tributes); and (iii) explicit inclusion of diffusion terms
representing pressure transport (with a third length scale
L3). Probably the crucial point distinguishing the Lew-
ellen and Teske model is that it contains more optim-
izable coefficients (than the LRR and RWC closures
used here), and that these were not prescribed wholly
independent of the very data (MOST functions) the
model was intended to reproduce.

The mediocre stratified-equilibrium profiles of the
RWC closure (e.g., Fig. 4) must compromise the inter-
pretation of the (following) assessment of whether these
types of models have skill as regards the influence of
stratification on disturbed flows. For in order to detect
the influence of stability experimentally, large depar-
tures from neutrality are needed, to distinguish that in-
fluence from sampling (and other) errors in the measured
data.3 Yet far from neutrality the models themselves,
even as regards the equilibrium flow, simply are not
realistic.

4. Simulations of the Bradley–Mulhearn
windbreak

Before looking at the Ellerslie observations it is war-
ranted to revisit, and to some extent reinterpret, earlier
simulations of the Bradley and Mulhearn (1983) fence
(neutral, perpendicular winds; h 5 1.2 m, h/z0 5 600,
kr 0 5 2), a case which has played an important role in
guiding the development of numerical shelter models.
Figure 5 compares several computations with observed
mean wind transects for that experiment. For each sim-
ulation the computational domain spans 260 # x/h #
112, z/h # 47 (‘‘standard domain’’ of W85), while the
mesh was either the coarse, nonuniform ‘‘standard grid’’
of W85 with Dx/h $ 2, Dz/h $ 0.25, or a refined and
uniform mesh Dx/h 5 1, Dz/h 5 0.1. On the standard
grid, the present simulation with LRR closure repro-
duces the W85 result, the depth of the wind reduction

3 As Part I discusses, there are experimental pitfalls with the def-
inition of extremely stratified cases too, in particular exacerbated
overspeeding and possible stalling of cup anemometers, and the pos-
sibility of unwittingly having averaged across periods containing brief
reversals of wind direction relative to the fence.

curve being roughly correct, but the recovery too slow.
The RWC closure on the same (coarse, nonuniform) grid
gave a shallower wind reduction curve but a better re-
covery; however, when resolution is refined, the dis-
tinction between the LRR and RWC simulations is un-
important. It is pertinent to emphasize that the data
themselves are somewhat irregular, even though rep-
resenting an average over about 25 h of near-neutral
winds, and, consequently, it is difficult to argue for the
superiority of one of these simulations over another
(though in principle of course, the higher-resolution sim-
ulations are to be preferred).

On Fig. 5 RWC simulations are shown using both the
choice (ce1 5 1.44, ce2 5 1.92) widely regarded as ‘‘stan-
dard’’ for the e equation, and the choice (ce1 5 1, ce2

5 2) that has been usual with the RWC closure. The
latter choice yields a markedly better outcome. Evi-
dently on the refined grid there is little distinction be-
tween simulations with the RWC and the LRR closures,
provided each is permitted the closure constants favored
by its originators. Therefore, the main (and unsurpris-
ing) conclusion to be drawn from Fig. 5 is this: that
discretization error (grid dependence), choice of closure,
and specification of closure constants all to some extent
affect the outcome of simulations of disturbed winds.
W85’s hypothesis that all RANS closures might give
inadequate rate of recovery rested on the accident of
the particular closures and grids he examined, and may
be wrong;4 although perhaps it is more useful to remark
that, in view of the many choices to be made in RANS
modeling, among these a choice will likely be possible
in which the far wake is well simulated. The overall
impression gained from comparisons like this is of an

4 But see Wilson and Mooney (1997), who argue from a pertur-
bation analysis (kr0 → 0) that eddy diffusion closures do underesti-
mate the rate of recovery.
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FIG. 6. Observed (solid symbols) and computed mean relative wind
speed S/S0 upwind and downwind from the Ellerslie fence (h 5 1.25
m, z0 5 0.019 m, h/z0 ; 65, and kr0 5 2.4), for neutral stratification
and a perpendicular approach wind. (a) The RWC and LRR closures
on the ‘‘standard domain’’ and nonuniform, low-resolution ‘‘standard
mesh’’ of W85 (termed Ds 5 [260:112, 47 ) are compared. (b)24]10,13

Mesh (resolution) sensitivity of the RWC solutions on the standard
domain, and (c) domain sensitivity on a uniform mesh. Each closure
is here used with its favored coefficients, that is, for RWC ce1 5 1,
ce2 5 2 and for LRR ce1 5 1.44, ce2 5 1.92.

FIG. 7. RWC and LRR simulations on the standard domain and
observations for neutral, perpendicular flow (Ellerslie experiment, h
5 1.25 m, z0 5 0.019 m, h/z0 ; 65, kr0 5 2.4). RWC and LRR are
directly compared on uniform fine mesh (dx/h 5 1, dz/h 5 0.1), and
RWC is also shown on a nonuniform mesh: dx/h 5 0.1 ( | x/h | #
10), and dz/h 5 (0.1 or 0.05) (z/h # 4). Outside the region of uniform
fine mesh, grid length was gradually expanded to dx/h 5 dz/h 5 1.
The lighter solid line is the same simulation as the heavier solid line
(RWC with uniform mesh), but the model’s cup wind speed has been
evaluated using Eq. (47) in full (variance terms retained). Each clo-
sure was used with its favored coefficients.

ambiguity in the modeling enterprise; but we should not
lose sight of the sampling error in individual 15-min
experimental transects, which may not be much smaller
that the (very roughly) 10%–15% ambiguity in the am-
plitude (DS/S0 at the location x̆ of minimum wind speed)
of the modeled wind reduction curves evidenced by
Fig. 5.

5. Simulations of the Ellerslie windbreak

For the Ellerslie simulations, h 5 1.25 m, z0 5 0.019
m (h/z0 5 65), and, unless otherwise specified, kr 0 5
2.4. Regarding the observations, it is to be recalled that
the reference mean wind speed S0 is that observed in
the approach flow at z 5 0.62 m 5 h/2 and that data
from periods with S0 , 1 m s21 have been rejected
(other selection criteria are given in Part I).

a. Neutral winds at perpendicular incidence

The upper panel of Fig. 6 indicates that simulations
of the Ellerslie experiment on the ‘‘standard grid’’ of
W85 are fairly compatible with the observations, irre-
spective of which of the two closures one picks. This
close similarity of outcomes is unsurprising, in view of
the close similarity of the two closures, but note the

proviso that it depends on each being implemented with
the values of the coefficients recommended by the orig-
inal authors, namely for the RWC simulations ce1 5 1,
ce2 5 2, and for the LRR simulations ce1 5 1.44, ce2 5
1.92, and 5 0.25 (±2at). The middle and lower panelsc9s
of Fig. 6, respectively, illustrate sensitivity of RWC sim-
ulations to resolution (with fixed domain) and domain
size (with fixed, uniform resolution); these emphasize
the necessity for a high resolution over a very large
domain.

Figure 7 directly compares simulations using the
RWC and LRR closures on the refined, uniform grid
(Dx/h 5 1, Dz/h 5 0.1). The computed transects are
very similar and slightly overestimate mean wind re-
duction. Also given on Fig. 7 are comparative RWC
simulations on two nonuniform meshes covering the
same (‘‘standard’’) domain, with computational reso-
lution in the region | x/h | # 10, z/h # 4 refined to
(dx/h 5 dz/h 5 0.1) or (dx/h 5 0.1, dz/h 5 0.05).
Outside of this region, the grid lengths were stretched
from cell to cell by a constant factor of 20%. Stopping
criteria for both runs were the same, but the iteration
count was much larger for the dz/h 5 0.05 run, and
conceivably the distinction in outcomes relates to that
factor, not the finer grid. What Figs. 6 and 7 indicate is
the difficulty of deciding how fine the computational
resolution needs to be to ensure grid independence (and
there is no reason to suppose it has been obtained even
with dx/h ; dz/h ; 0.1). Among simulations with dif-
fering uniform and nonuniform meshes it is difficult to
discern systematic influences. However, it is plain that
the computed wind reduction curve is systematically
deepened as computational resolution is improved, such
that the low-resolution simulations of W85 happily but
fortuitously give best agreement with observations,
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FIG. 8. Observed and computed transects of relative wind speed
versus orientation of the upwind flow (neutral stratification). Legend
indicates the number of 15-min periods compounded, the stability
class, and the mean approach wind speed; symbols distinguish the
orientations as b 5 0 (filled circle), b 5 308 (filled triangle), and b
5 608 (filled square). The simulations shown (solid lines) stem from
the RWC closure on the refined grid, with ce1 5 1, ce2 5 2, and kr0

5 1.8, intentionally reduced from the correct value (kr0 5 2.4) to
‘‘tune’’ the b 5 0 simulation to match the perpendicular transect.
The lower panel explores consequences of several treatments of drag
in the V momentum equation (neglected in all other simulations).

when using the value of the resistance coefficient kr 0

determined in the wind tunnel (i.e., kr 0 5 2 for the
Bradley–Mulhearn experiment, and kr 0 5 2.4 for the
Ellerslie experiment).

Figure 7 also addresses the significance of the inclu-
sion of the terms in velocity variance when the model’s
cup wind speed is estimated using Eq. (47), instead of
the simpler (but, in principle, less legitimate) S 5

. Because (as shown in section 5d) the models2 2Ïu 1 y
compute a large rise in the velocity variances in the lee
of the barrier, inclusion of these terms substantially al-
ters the models’ relative mean wind speed curves. The
simpler estimate S 5 gives what seems a2 2Ïu 1 y
more reasonable result.

b. Neutral winds at oblique incidence

Having seen that for the perpendicular case reason-
ably good wind reduction curves are given by the RANS
models, though with a troubling level of ambiguity
(about 10%–15% of the amplitude of the relative wind
curve) linked primarily to discretization error, it is of
interest to see whether RANS computes equally well
the consequences of obliquity of the wind. Figure 8
gives observed wind reduction curves for b 5 08, 308,
and 608, in comparison with computations using the

RWC closure, with ce1 5 1, ce1 5 2. Here in the sim-
ulations a uniform mesh (dx/h 5 0.1, dz/h 5 0.1) covers
the standard domain (260 # x/h # 112, z/h # 47), and
kr 0 has been deliberately reduced to kr 0 5 1.8 (from the
correct value kr 0 5 2.4) to better match the b 5 0
simulation to the observations.

The computations are qualitatively consistent with the
observations in the sense that obliquity systematically
reduces shelter5 in the near lee, and moves the point of
minimum wind speed closer to the windbreak. However
computed differences between the relative winds at a
given location for the cases b 5 0, 30, and 608 are much
greater than the differences observed, such that the mod-
el underestimates shelter from oblique winds. Could this
be because it has been assumed that the fence does not
remove V momentum, that is, y 5 0? The assumptionf
is without consequence as far as the simulations of per-
pendicular flow are concerned, but has a direct bearing
on the oblique cases. The lower panel of Fig. 8 shows
the impact of alternative treatments in which either the
parallel component has been required to vanish at the
fence (‘‘no slip’’), or a localized momentum sink has
been inserted in the V momentum equation, either

2 2f 5 2k VÏU 1 V d(x 2 0)s(z 2 h) or (49)y r0

2 2 1 1f 5 2[U(x , z)V(x , z) 2 U(x , z)V(x , z)]y

3 d(x 2 0)s(z 2 h). (50)

Equation (49) parallels the step one would take were
the windbreak made up of a finite width of plants or
trees, in which case kr 0 would be the product CdAX of
a drag coefficient Cd with the foliage area density A and
width X of the shelter. Equation (50), implemented with
x6 5 x 6 Dx/2 (and entailing linear interpolation be-
tween the grid points at the fence and immediately up-
stream and downstream), approximates Eq. (11). These
treatments of the influence of the fence in the V mo-
mentum equation (‘‘parallel drag’’) cover a range of
plausible possibilities; none altered the computed so-
lutions in a definitively favorable way, relative to the
observations (an ensemble average over seven cases).
Therefore, although in assessing the performance of the
RANS wind models one needs to bear in mind that the
interaction of the fence and the flow has been param-
etrized, it seems unlikely that mere refinement of that
parameterization will bring the steady-state RANS ap-
proach into substantially better accord with observa-
tions, as regards the effect of obliquity. A plane wind-
break fence has something of the character of a wing,
and so perhaps it may be unsurprising that the vortex
dynamics (that are implicit in a RANS closure, and tuned
to the reference flow) should fail to properly model the

5 Computations by Wang and Takle (1996) using first-order closure
for a shelterbelt of thickness h/2 indicated an enhanced shelter in the
near lee in oblique winds, though only for ‘‘low density’’ windbreaks.
No such effect was reported by Nord (1991) in her observations
around tree windbreaks.
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FIG. 9. Observed (solid symbols) and computed stability depen-
dence of the mean relative wind speed around the Ellerslie fence, for
a perpendicular approach wind. Simulations using the RWC closure
on a uniform mesh (dx/h 5 0.1, dz/h 5 0.1), with the resistance
coefficient ‘‘tuned’’ so that the neutral simulation (solid line) matches
the observations (kr0 5 1.8). (top) Cases of unstable stratification
(upstream Obukhov length L 5 218, 29, and 25 m) computed on
the standard domain; (bottom) case of stable stratification, computed
on a shallower domain.

response of the mean flow to this varying ‘‘angle of
attack.’’

c. Stratified winds at perpendicular incidence

The upper panel of Fig. 9 compares the observed
influence of unstable thermal stratification in the case
of winds at perpendicular incidence, with that indicated
by simulations using RWC (with ce1 5 1, ce2 5 2) on
the standard domain and with the uniform grid (dx/h 5
1, dz/h 5 0.1). Of course these solutions are not grid
independent, and the resistance coefficient has (again)
been tuned away from its proper value so that the neutral
simulation matches the observations (one might say the
wind model is being used in a ‘‘differential mode’’).
The influence of stratification is (correctly, it appears
from the limited data) computed to be restricted to the
leeward side of the fence. Furthermore, the simulations
are qualitatively consistent with the observation that un-
stable stratification compromises (reduces) shelter and
shifts the point x̆ of lowest mean wind speed closer to
the fence.

For stable stratification (lower panel of Fig. 9), and
particularly if the magnitude of the Obukhov length is
small, a compromise has to be reached between the
conflicting requirements of a deep computational do-
main, and the validity of the 1D (equilibrium) profile
solutions, which entails retaining z/L small enough (say,

less than unity) on the entire height axis. For the sim-
ulation of even a modestly stable case (L 5 130 m),
it was found to be necessary to reduce the height of the
domain from z/h 5 47 to z/h 5 20. To eliminate any
possibility of being confounded as regards the modeled
influence of stability by comparing neutral and stable
runs computed on different domains, that is, to properly
use the numerical model in a differential mode, the neu-
tral case was rerun on the same domain; as shown, the
two outcomes for L 5 ` are hardly distinguishable. The
comparative RWC solutions for L 5 `, 130 m are
consistent with the observations, in that stable stratifi-
cation (like unstable) results in a shallower relative wind
curve (reduced wind protection). Not forgetting that kr 0

has been tuned away from its proper value for these
simulations or forgetting the arbitrariness of using this
particular mesh, one can credit the RWC solution with
providing something like the correct stratification re-
sponse, in the near lee. This conclusion does not rest
on a specific choice of the solution mesh, for other com-
putations (not shown) on the standard domain and using
the coarser, nonuniform ‘‘standard grid’’ of W85 were
about equally consistent with the observations.

d. Computed ‘‘quiet zone’’ for neutral, perpendicular
winds

Figure 10 shows that RANS simulations using the
RWC (or LRR) closure do produce some semblance of
the expected quiet zone in the near lee, and that this
quiet zone is more marked in su than in sy (recall there
is no sink for at the fence; probably the sudden dip2sy

in sy in the immediate lee reflects redistribution loss of
energy to , which in contrast according to the present2s u

treatment is directly ‘‘filtered’’ at the fence). Overall,
however, the simulations of the velocity standard de-
viations compare poorly with the observations, in par-
ticular as regards the poorly estimated span of the quiet
zone, and (computed) region of markedly more ener-
getic turbulence away from the immediate lee. There is,
however, reason to be guarded about the observations.
Enhanced shear in the region z/h * 1 has in other ex-
periments been observed to result in a turbulent wake
spreading from the tip of the windbreak (Raine and
Stevenson 1977; Finnigan and Bradley 1983; Wilson
1987; McNaughton 1989), and so in fact the Ellerslie
observations, provided by a sparse transect along z/h 5
1/2 of two-dimensional sonic anemometers at x/h 5
(212, 4, 10, 15), are surprising as regards the lack of
evidence of that zone (i.e., for the neutral, perpendicular
case the su transect shows no influence whatsoever of
the supposed turbulent wake zone, while the sy transect
shows only about a 10% rise over the upstream level).

In any case the simulations do not predict the ex-
tended quiet zone observed in su, computing instead a
very rapid (over) recovery. Given that the mean flow
is simulated reasonably well, suspicion must fall on the
parameterized terms in the budget [Eq. (24)], par-2s u
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FIG. 10. Observed (symbols) and computed transects of the nor-
malized standard deviations su,y(x, h/2)/su,y(2`, h/2) RWC simula-
tion with kr0 5 1.8 (solid line), RWC with kr0 5 2.4 (short-dashed
line), and LRR with kr0 5 1.8 (long-dashed line).

ticularly the closures for turbulent and pressure transport
(represented by diffusion terms), for redistribution (the
LRR and RWC differ in an essential way only here;
RWC contains the Rotta-type isotropization term,
alone), and for the dissipation rate e. This failure of the
RANS wind models to predict a satisfactory field of the
turbulent velocity variances is disappointing. It would
be useful (e.g., in the context of urban dispersion mod-
els) to be able to (rapidly) compute a field of the flow
properties Ui, , e, which are the key inputs tou9u9i j

‘‘drive’’ the Lagrangian stochastic class of dispersion
models.

6. Conclusions

Whatever the quality of these RANS simulations of
windbreak flow, the exercise deserves the following
credits. Only after the comparison with models had be-
gun did the author cease joining the experimental data
points at x/h 5 (21, 12) with line segments, which
inappropriately averaged the highly variable interme-
diate slope evident from the models (in hindsight, this
was the most elementary of errors). Second, early drafts
of graphs of Part I included observations at x/h 5 22
that compared woefully with the simulations (notice the
‘‘band’’ of model results is far narrower upwind than

in the lee); on closer examination these could justifiably
be omitted, because a single cup anemometer had cov-
ered both positions x/h 5 22, 21, and these outliers
owed to a single 15-min interval, whereas observations
at greater x/h represented a more satisfactory average.
Thus, RANS simulations can play a useful guiding role
in the analysis of observations.

From the present simulations and those of Wilson and
Yee (2003), it seems necessary to admit that the RANS
approach to shelter flows produces not a single curve
for comparison with observed transects or profiles, but
a band. This ambiguity stems minimally from choice of
closure (though only two, and very similar, closures
were tested here), and, more important, from discreti-
zation error, whose elimination, if even possible in prac-
tice, will require a mesh much finer than that used in
these simulations. There seems no call to be excessively
troubled by this looseness in what we consider the com-
putational flow field, when we recall that the sampling
error in single-run observational statistics of very dis-
turbed atmospheric flows is comparably large. What has
been demonstrated is that notwithstanding the non-
uniqueness of ‘‘the’’ RANS solution (across differing
closures, closure coefficients, domain, and mesh), pro-
vided one is careful to keep constant all aspects of the
simulation except the obliquity (b) or stratification (L)
of the upwind flow, then the computed responses of the
mean wind transect to variations in b, L are correct, at
the qualitative level. However, if one demands quan-
titative skill, then the computed response of the mean
wind speed transect to obliquity must be said to be poor;
even for normally incident winds, the computed tran-
sects of velocity variance are unacceptable. May one
draw the conclusion, of some significance for the ap-
plication of RANS in environmental analysis and as-
sessment, that these models do not objectively capture
reality6 in a world of complex boundaries and high
Reynolds numbers? If so, then it will be necessary to
refine the closure approximations, and (though this is
probably of significance only close to unresolved bound-
aries) to assess the legitimacy of neglecting the com-
ponent ^ & of the compound Reynolds stress thatu0u0i j

emerges from the joint time–volume averaging.
Do these indications as to the limited capability of

RANS rest on the fact that the closures examined date
from the 1970s? Subsequent developments in steady-
state RANS closures at second order have mainly tar-
geted improved prediction very near boundaries, where
Eq. (44) for the influence of pressure fluctuations is
known to be invalid. Greatly improved computing pow-
er and better parameterization of the near-wall flow ob-
viate the need to use ‘‘wall functions,’’ which presup-
pose (adjacent to boundaries) an equilibrium structure
that may be illegitimate. Substitution (Durbin 1991,

6 It is pertinent that engineers and CFD specialists now regard
RANS as inadequate for separating and reattaching turbulent flows
(e.g., Keating et al. 2004, section 1).
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1993) of a differential equation in lieu of an algebraic
equation [like Eq. (44)] for the redistribution tensor is
found (e.g., Manceau and Hanjalic 2000) to improve
the prediction of mean velocity and shear stress profiles
in the ‘‘buffer layer’’ just outside the viscous sublayer.
However, such developments of the closure assumptions
seem unlikely to greatly impact and improve compu-
tations of micrometeorological winds, that is, flows over
fully aerodynamically rough surfaces, for these reasons:
first, and as direct evidence, W85 found that incorpo-
ration of a near-wall correction to the pressure strain,
and of alternatives to the simple-minded wall functions,
had no valuable impact on the quality of windbreak
simulations; second, and more broadly, in micromete-
orology we seldom make measurements so close to
ground that the turbulence approaches two-dimension-
ality, that is, we do not even hope to resolve and describe
the equivalent of the viscous and buffer layers adjacent
to the metal surfaces of ducts and channels.

Two factors recommend that the present diagnosis of
the fundamental competence of RANS be interpreted as
provisional: has the unresolvable aerodynamic effect of
the barrier been properly represented by the momentum
sinks? And what of the impact of discretization errors,
that is, faulty numerical procedure? Launder (1989)
holds improvements in discretization schemes and re-
fined grids as at least partly responsible for the emer-
gence of a definite edge of second-order over K-clo-
sures, and certainly discretization error plagues the ef-
fort to determine the merits of the various closure mod-
els. Even the finest grid used here (Dx/h 5 Dz/h 5
1/10, i.e., Dx 5 Dz ; 10 cm) is coarse relative to the
thickness of the fence, and it may be that ‘‘smoothing
out’’ rapid changes in wind direction that occur very
close to a barrier is problematical. In principle, dis-
cretization error reflects careless work, and simply
should not be there; but if one is unwilling to look at
numerical solutions that contain discretization error,
then one is unwilling to look at numerical solutions.
Grid independence cannot easily be established, and ow-
ing to the rapid changes in wind direction near a porous
barrier it conceivably might not be attainable unless the
mesh is refined to Dx, Dz ; dx (where dx ; 1 mm is
the thickness of the fence). By using a nonuniform grid,
converged simulations with Dx/h 5 0.1 in the region
of the barrier were obtained. However, although they
differed from the simulations on the coarser uniform
grid, they were not themselves grid independent. It may
be fair to say that a law of diminishing returns sets in
while attempting to refine the mesh.

It is an interesting observation that sometimes nu-
merical convergence for the windbreak flow could not
be attained using these steady-state RANS models: is
this a hint that the assumption of steady state is dubious,
and that possibly the equations are being driven in
‘‘search of a solution that might not exist’’ (Castro et
al. 2003)? Unsteady vortex shedding by a fence perhaps
makes such a flow a candidate for unsteady RANS (UR-

ANS) simulations, in which one computes explicitly the
largest eddies while burying smaller eddies in the av-
eraging, an approach that has been explored for ‘‘un-
steady’’ turbulent flows about buildings or idealized
bluff bodies (Gosman 1999; Lübcke et al. 2001) and
over hills (Castro et al. 2003). Anyone who has observed
the vortices that bend the grass and roll downwind in
the lee of a windbreak is likely to consider time-de-
pendent simulation (URANS or LES) as a fascinating
idea, notwithstanding that the spectral division (re-
solved/unresolved) in URANS is generally ambiguous
(all turbulent flows are unsteady, and at high Reynolds
numbers no convenient spectral gap permits spectral
division) and the arbitrary designation of a certain class
of flows as peculiarly unsteady is problematical in prin-
ciple. For now, one may only speculate whether URANS
may hold an advantage over RANS; and certainly there
is nothing in principle that prevents windbreak flows
from being treated as steady-state, and modeled using
RANS, provided averages are suitably formed. How-
ever, ‘‘success’’ in science (or ‘‘theoretical modeling’’)
may well depend on what patterns one chooses to create,
to describe, and to theorize about: the choice (here) to
describe windbreak flow by averaging for 15 min to
define a (posited) steady state may have thrown up a
pattern that is as difficult to model as it is unrepresen-
tative of the instantaneous reality.

To conclude, it would be excessively cynical to say
that RANS models are no more than complex and am-
biguous algorithms to draw curves on graphs of obser-
vations.7 It would be excessively naive to say that they
objectively describe the real world. Experimentalists
may tend toward the first of these extreme views, while
occasionally protagonists of models may err toward the
other (one should reiterate the point that what one choos-
es to call ‘‘experimental reality’’ is also to some extent
a matter of taste). Probably the balanced view is to
reassert the potential value of RANS wind models, to
continue testing new closures as well as schemes that
reduce discretization error, and—wherever the issue of
their absolute correctness matters—to avoid their pre-
mature employment as a substitute for measurements,
however onerous the latter may be.
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7 It is literally true that the function of RANS models is no more
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satisfying the conservation principles) of the variation of flow sta-
tistics across the domain, guided by measured (or supposed) boundary
values.
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