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ABSTRACT

In numerical weather prediction models, drag on unresolved terrain is usually represented by augmenting the
boundary drag on the model atmosphere, in terms of an effective surface roughness length. But as is shown
here, if a terrain-following coordinate is defined relative to smoothed terrain, the residual unresolved terrain
component implies a volumetric momentum sink, as recently implemented in the Canadian Climate Centre GCM,
and as is implicit in the ‘‘orographic-stress profile’’ method. Thus treating drag on unresolved terrain by way
of an internal (rather than enhanced surface) momentum sink is a better method in principle. While the skill of
both methods hinges on limited fundamental knowledge of drag on terrain, a distributed momentum sink arguably
offers greater flexibility to improve modeling of mountain winds, if necessary by tailoring the sink to achieve
success, in specific regions, by trial and error.

A consequence of the new method is that unresolved terrain results in a ground-based (stress divergence)
layer, that is somewhat analogous to a plant canopy layer, from the point of view of its momentum balance.

1. Introduction

Meteorologists in numerical weather prediction com-
monly consider that the improvement of model perfor-
mance in mountainous regions is essentially an issue of
grid resolution. But although improved spatial resolu-
tion has been shown to improve prediction of some
variables, the field of vertical motion (and hence pre-
cipitation) remains problematical. This paper provides
a simple argument for the representation of drag on
unresolved terrain features by way of an internal (rather
than enhanced surface) momentum sink, in order to im-
prove modeling of mountain winds.

Smith (1978) and Davies and Phillips (1985) have
measured terrain drag, by evaluating the height-integral

z2

D/l 5 Dp(z) dz (1)E
z1

of the upwind–downwind pressure difference Dp across
the terrain.1 Davies and Phillips concluded that param-

1 Here D/l is the drag per unit crosswind length, [N m21]; and if
L is the alongwind length scale of the terrain, D/(l L) gives the spatial
mean drag [Pa]. Note that Eq. (1) derives from a surface integral on
the terrain

D 5 2 s n̂ dS (2)i E i j j
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eterization of terrain drag ‘‘will need to be a suitable
combination of an enhanced, non-trivial surface drag
formulation to represent small scale and blocking ef-
fects, coupled with a free atmosphere momentum dis-
sipation to represent the buoyancy wave contribution.’’

Here we exclude from consideration wave drag and
(Smith 1978) upstream blocking or regional trapping of
cold surface air by topography. Some understanding of
the drag of terrain on a neutral atmosphere has been
derived from theoretical and numerical modeling stud-
ies,2 which have progressed from consideration of low,
smooth, isolated or periodic 2D terrain with low slope,
to idealized 3D obstacles of large amplitude and slope.
The mechanism of the drag of (periodic) terrain on a
neutral atmosphere has been investigated in detail by
Belcher et al. (1993), who identify and rank various
contributions distinguishable from an asymptotic ex-
pansion in small parameters of the problem. For ex-
ample they find that in the case of an undulating surface
having low slope and a wavelength far less than the
scale U0 d/u* (where d is the depth of the boundary

for the net (vector) drag force, where sij is the stress tensor, and n̂j

is the normal to the hill surface. Neglecting viscous stress and an-
ticipating Reynolds averaging, sij 5 2 dij 2 r . The pressurep u ui j

term dominates.
2 These may be characterized by the linearized analytical solution

of Jackson and Hunt (1975) for wind over low hills in the boundary
layer, and subsequent developments of it (e.g., Hunt et al. 1988); by
nonlinear numerical simulations using first-order (Taylor 1977) or
second-order (Zeman and Jensen 1987) closure; and very recently by
large eddy simulation (Brown et al. 2001). For reviews see Taylor et
al. (1987), Finnigan (1988), and Taylor (1998).
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layer, U0 is a characteristic mean velocity, and u*0 is
the unperturbed friction velocity), the dominant contri-
bution to terrain drag is due to a surface pressure-asym-
metry ‘‘produced by the thickening of the perturbed
boundary layer in the lee of the undulation’’ (which
mechanism they name ‘‘nonseparated sheltering’’).

It is clear from the theoretical studies that terrain drag
depends on many parameters of the terrain and the at-
mosphere, but it is not the aim of this paper to formulate
a more exact drag law for particular terrain. Rather, the
subject here is how best to incorporate the drag of un-
resolved terrain (for argument’s sake, assumed known,
at least approximately), in atmospheric models.

Representation of drag on unresolved terrain

The drag of the ground on the atmosphere is com-
monly and conveniently quantified by the ‘‘surface’’
values (height z → 0) of the turbulent shear stresses

t 5 2r lim u9w90x
z→0 (3)

t 5 2r lim y9w9,0y
z→0

where r is air density, (u9, y9, w9) are the turbulent
velocity fluctuations, and the overline (here) denotes a
time average; the friction velocity u*0 is defined by r2

5 ( 1 ) [see Weber (1999) for a discussion of4 2 2u t t0 0x 0y*
nuances in the definition of u*]. If one were to consider
the microscopic details of the transference of this stress
onto the solid earth, the drag could be decomposed into
a viscous and a form-drag component. The drag t0 is
often parameterized in terms of a geostrophic drag co-
efficient Cg [ (u*0/Ug)2 where Ug is the geostrophic
wind speed, or, if referred to a local mean wind speed
(Sp) at a height zp within the atmospheric surface layer,
may be parameterized in terms of a surface roughness
length z0, namely,

t k S0 y p[ u* 5 , (4)0! r ln(z /z )p 0

where ky ø 0.4 is von Kármán’s constant (a diabatic
correction is easily introduced). Note that according to
Eq. (4), or rather the corresponding vector components
of it along x, y, which involve component friction ve-
locities u*0x, u*0y, the surface stress is aligned with the
surface wind direction at height zp.

In lieu of calculating height-varying terrain drag
Dp(z) on unknown or unresolved terrain, an effective
net drag [as in Eq. (1)] may be applied at ‘‘ground,’’
as the surface stress t0. Fiedler and Panofsky (1972)
introduced an ‘‘effective’’ roughness length, , as aeffz0

‘‘space-average parameter,’’ in order to estimate the cor-
rect momentum loss from the (model) atmosphere to
ground, over uneven terrain.3 This approach has been

3 Alternatively, the influence of terrain may be parameterized by
adjustment of the geostrophic drag coefficient, e.g., Sawyer (1959).

developed by others (e.g., Mason 1988; Xu and Taylor
1995) and is at present the usual way to treat drag on
unresolved terrain. In numerical weather prediction
(NWP) Eq. (4), with z0 replaced by , allows one toeffz0

calculate the local rate of momentum loss to ground,
for a given value of the model wind speed (which, nat-
urally, is to be regarded as a spatial average) at a near-
ground grid point. Of course this approach is predicated
on the supposition that the form of the mean wind profile
over the terrain is (as for neutral flow on level terrain)
semilogarithmic, a supposition supported by Hignett and
Hopwood (1994), who find ‘‘for heights proportional to
only a small factor of terrain heights above the surface,
the mean flow behaves logarithmically to a good ap-
proximation,’’ and by Wood and Mason (1993), whose
model results ‘‘support the idea that sufficiently far
above the hills, the areally-averaged velocity profile
varies approximately logarithmically with height.’’ Ma-
son and King (1984), from their experimental study of
flow over parallel ridges, noted that ‘‘the influence of
the terrain on the whole boundary layer is largely con-
fined to a region close to the surface.’’

As to specific knowledge of the augmented boundary
drag, Wood and Mason (1993) proposed a drag formula
integrating the known results, which, slightly rewritten
following Xu and Taylor (1995), states:

2 2AD u (mz ) fm25 abp . (5)22 2A ru* u (mh ) As 0 m s

In Eq. (5) As is the base-area (i.e., planform area) and
Af is the frontal area of the terrain feature; Asr is2u 0*
the residual drag force that would have occurred in the
absence of topography; a 5 a(l/z0) is an empirical
dimensionless factor that absorbs a drag coefficient; b
is a ‘‘shape factor’’ for the terrain (b 5 1 for 2D terrain);
and hm, zm are the height of the middle layer of the
boundary-layer flow approaching the terrain (Hunt et
al. 1988), and the pressure scale-height. This formula
may not apply to wind over complex terrain, as opposed
to a single, arbitrarily complex hill or ridge, because
(Mason and King 1984) in general one may not regard
the boundary layer approaching any one component of
the topography as undisturbed; that is, there are limits
to the validity of the linearized flow theory implicit in
Eq. (5) by virtue of its reference to hm, etc.

Scinocca and McFarlane (2000) reported having test-
ed the representation of topographic wave drag in a
GCM by means of the inclusion of a variable volumetric
momentum sink in the momentum equations, at all mod-
el levels lying below the top of the (unresolved) terrain,
the latter represented by means of elliptical barriers of
appropriate height, eccentricity, and orientation. Sim-
ilarly, as an alternative to the effective-roughness
length method, Wood et al. (2001) tested the imposition
of an ‘‘explicit orographic-stress profile’’ toro(z) 5
toro(0) e2z/l , where toro(0) was assumed to be given by
Eq. (5) and where the decay length scale l was treated
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as being a constant; the divergence ]toro/]z of the oro-
graphic stress is of course equivalent to a volumetric
momentum sink (form drag). Scinocca and McFarlane
noted that ‘‘implementation of the form drag has the
ability to change the direction of the flow so that it is
more parallel to unresolved topographic ridges.’’ While
that effect can also be attained by the imposition of
boundary (rather than internal) drag, as noted by Wood
et al., the effective roughness length method necessarily
aligns the surface shear stress with the low-level wind.

It is the purpose of this paper to give an explicit
justification for the inclusion of orographic form drag
in general, and to consider some of the consequences
of that approach.

2. On the representation of terrain in atmospheric
models

a. A smoothed map

The starting point for the representation of terrain is
a digital map, say hmp(x, y). Generally the available map
is more intricate than could be represented by the model,
which for argument’s sake has grid spacings Dx, Dy that
might be of order of 0.1–1 km (mesoscale model) or
10–100 km (weather model). Therefore we introduce
smoothed terrain, that is, a map that has been smoothed
on length scale dx, dy,

½dx (½)dy1
h̃(x, y) 5 G(x9, y9)E Edxdy

2(½)dx 2(½)dy (6)
h (x 1 x9, y 1 y9) dx9 dy9,mp

where G(x9, y9) is the smoothing function.4 Now we
may decompose true terrain height h(x, y) as

h(x, y) 5 h̃(x, y) 1 h9(x, y), (7)

where h9(x, y) is the local deviation of the elevation
from the smoothed map, which, for the common
smoothing functions, takes on both positive and nega-
tive values across the landscape. The field h9(x, y) is
sometimes accommodated statistically in weather mod-
els (‘‘enhanced orography’’). For example, using ‘‘en-
velope mountains’’ (Vernekar et al. 1992) one specifies
the smoothed terrain height as

h̃ (x, y) 5 h̃(x, y) 1 a s (x, y);e h (8)

that is, one ‘‘bumps up’’ the model terrain by adding
some multiple a of the standard deviation sh of h9, over
the grid cell. ‘‘Silhouette mountains’’ attempt to deal
with less easily defined characteristics of the unresolved
terrain, that is, its ‘‘organization’’ (random hills? or one
or more linear ridges?), and its directional anisotropy
(if ridgy, is there a predominating orientation?).

However, the smoothed map, h̃ or perhaps h̃e, now

4 If G were a simple boxcar function, then dx, dy (alone) would
define the range of terrain smoothing, and a choice dx ; Dx would
retain about as much terrain resolution as the model grid permitted.

becomes the hypothetical real lower surface of our at-
mosphere (see Fig. 1), and h̃x, h̃y are the tangents of the
slope angles of the smooth terrain (henceforth through-
out the paper, subscripts x, y, z will indicate partial dif-
ferentiation). At this point it is customary to worry no
further about the topographic deviation h9, other than
to consider that mountains are to be characterized by
an increased surface roughness length appearing ineffz0

the treatment of the turbulent boundary layer by the
‘‘physics package,’’ and that unresolved gravity waves
(caused by the unresolved terrain) may in some circum-
stances need to be parameterized.

b. Choice of a vertical coordinate that is ‘‘flat’’ at
the base of the model atmosphere

At this point we have the situation of Fig. 1. We wish
to model the flow in the atmosphere above the curve z
5 h̃(x, y), and we have the problem that we can not
easily conform a grid to this surface, which to some
extent retains the irregularity of the true terrain. We
would like to impose natural boundary conditions on z
5 h̃(x, y), but have the difficulty that what is ‘‘natural’’
is no longer clear, since z 5 h̃(x, y) is not a true air/
ground boundary.

To simplify grid generation, the strategy of most
weather models is to choose a terrain-following vertical
coordinate, that is, to perform a coordinate transfor-
mation into a new, nonorthogonal system of axes. The
simplest example, and that used in this paper, is the
distance h above local mean terrain height,

h(x, y, z) 5 z 2 h̃(x, y), (9)

which satisfies h 5 0 along the resolved terrain. Another
common solution is a pressure-ratio coordinate (intro-
duced by Philips 1957)

p(x, y, z, t)
s(x, y, z) 5 , (10)

p(x, y, h̃(x, y), t)

which satisfies s 5 1 along the resolved terrain, and
has the additional convenience of being ‘‘flat’’ at the
top of the atmosphere [a property that also applies to a
modified height coordinate, h* 5 (z 2 h̃)/(zT 2 h̃),
where zT is the top of the model atmosphere]. As noted
by Haltiner (1971), the use of pressure (or pressure ratio
s) as vertical coordinate is particularly attractive if it
is to be assumed that the hydrostatic equation is valid.

In the following sections, the governing equations are
expressed for the (x, y, h) coordinate system, but it will
be obvious how to include in other terrain-following
coordinate systems the new source terms due to inter-
action of the atmosphere with unresolved terrain. The
important point is that, because of the coordinate trans-
formation, there is no longer any terrain, in the sense
of an irregular lower boundary to the atmosphere . . .
rather, as shown below, the (resolved) terrain is ‘‘felt’’
by virtue of new source terms that arise in the (trans-
formed) equations of motion.
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FIG. 1. Dashed-line in upper panel represents the smoothed terrain (height z 5 h̃), which upon
coordinate transformation becomes the straight surface h 5 0 in the lower panel; the vertical
arrows represent the local (unresolved) terrain deviation h9(x) from the smoothed terrain. The
lower panel represents the configuration of a weather model in a terrain-following coordinate
h, recognizing that the terrain ‘‘followed’’ leaves local topographic deviations unre-
solved.Schematic at lower left shows the stress divergence (]t/]z) across the layer of unresolved
terrain, and resultant splitting of the (spatial-mean) wind profile (u) into an upper boundary-
layer profile (concave upward) and a lower profile of opposite curvature in the terrain layer,
joined at an inflexion point.

3. The conservation equations

Cauchy’s equation of motion, valid for any contin-
uum, states that [Batchelor 1985, Eq. (3.2.2)]

]tdu 1 i ji 5 F 1 , (11)idt r ]xj

where ui is the velocity of a fluid element, r is the
density of the continuum, d/dt is the material (Lagrang-
ian) derivative, Fi represents the sum of all body forces
acting, and t ij is the stress tensor, whose divergence
gives the sum of the surface forces upon the fluid ele-
ment. The Navier–Stokes equations result when the
stress tensor is expressed by way of Stokes’s hypothesis
for a Newtonian fluid, and under the Boussinesq ap-
proximation we may write the Navier–Stokes equations

(conventionally) as
]u ]u 1 ]p ui i 21 u 5 2 1 n¹ u 1 g dj i i3]t ]x r ]x uj 0 i 0

2 2e V . (12)i j k juk

Here p is the departure of the pressure from a hydrostatic
and adiabatic reference state, r0 is the mean density of
the layer, u is the departure of potential temperature from
its reference value u0, f 5 2 | V | are the components
of the earth’s angular velocity, and n is the kinematic
viscosity. We henceforth set r0 5 1 so that p will rep-
resent the kinematic pressure departure, and neglect vis-
cous momentum fluxes. We also simplify Coriolis terms
by assuming the x axis parallel to lines of latitude, in-
troducing the Coriolis parameter f 5 2 | V | sinf (where
f is latitude), and neglecting small terms involving
cosf.

Bearing in mind that under the Boussinesq approxi-
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mation the velocity field is nondivergent, an alternative
expression of Eq. (12) is

]u ] ]u ui i5 2 u u 1 pd 2 n 1 g di j i j i31 2]t ]x ]x uj j 0

2 2e V , (13)i j k juk

where evidently (ui uj 1 p dij 2 n(]ui/]xj)) is a (ki-
nematic) momentum flux. We have now a statement of
(momentum) conservation in the universal form

]ui 5 2= · F 1 S , (14)u ui i]t

where the lhs is the ‘‘storage’’ term, and the rhs is the
sum of the flux divergence (a transport term) and the
source term(s).5 As far as their effects on the local time
evolution of ui are concerned, a momentum-flux diver-
gence and a source are equivalent.

4. Transforming the dynamical equations into the
terrain-following coordinate

Once reframed in terms of the new, terrain-following
coordinate, the model atmosphere is no longer disturbed
by the complicated boundary condition of real terrain;
that is, the no-slip and no-leak conditions applied rel-
ative to the resolved terrain z 5 h̃(x, y). Rather, as this
section shows, it will now be ‘‘driven’’ by source terms,
or inhomogeneities, whose origin lies in the coordinate
transformation from natural height above sea-level (z)
to h (or s or whatever other terrain-following coordinate
system is chosen).

Momentum equations in the x, y, h coordinates

Let F 5 F(x, y, z) be an arbitrary field, which we
now rewrite as F 5 F[x, y, h(x, y, z)]. It is easy to show
that

]F ]F ]F ]h
5 11 2 1 2 1 2 1 2]x ]x ]h ]x

yz yh xy yz

]F ]F ]F ]h
5 11 2 1 2 1 2 1 2]y ]y ]h ]y

xz xh xy xz

]F ]F ]h
5 , (15)1 2 1 2 1 2]z ]h ]z

xy xy xy

where in the third equation, for our particular coordinate
h, (]h/]z)xy 5 1. We henceforth omit the clarifying sub-
scripts on the partial derivatives.

It is straightforward using Eq. (15) to transform the

5 Generalizing from Eq. (14), there is a useful threefold classifi-
cation of the terms arising in any of the conservation equations of
fluid mechanics: storage terms are terms of form ]/]t( ), i.e., partial
derivatives in time; transport terms have form ]/]xi( ); and all other
terms are sources.

partial derivatives appearing in the continuity equation
and the Navier–Stokes equations. We retain horizontal
(u, y) and vertical (w) velocities (i.e., velocities are still
referred to fixed, local Cartesian axes), but it is advan-
tageous to define

w* [ w 1 h u 1 h y [ w 2 h̃ u 2 h̃ y (16)x y x y

as the difference between local vertical velocity and the
projection of the horizontal velocity vector onto the lo-
cal normal to the hill. In terms of w*, the continuity
equation may be written

]u ]y ]w*
1 1 5 0, (17)

]x ]y ]h

which amounts to a statement that the (air) mass flux-
density vector

F 5 r (u, y, w*)a 0 (18)

is nondivergent in (x, y, h) space, and by implication,
relative to the new coordinate system, convective fluxes
are to be formed using velocity vector (u, y, w*).

In the nonorthogonal, terrain-following frame of ref-
erence, the flux-form of the u momentum equation is

] ] ]
2(u 1 p) 1 (yu) 1 (w*u)

]x ]y ]h

]
5 f y 1 (h̃ p). (19)x]h

Note that in view of Eq. (17),

] ] ]
2(u ) 1 (yu) 1 (w*u)

]x ]y ]h

]u ]u ]u
[ u 1 y 1 w* (20)

]x ]y ]h

so we may easily switch between the flux- and advection
forms of the governing equations. The y- and w-mo-
mentum equations are

] ] ]
2(uy) 1 (y 1 p) 1 (w*y)

]x ]y ]h

]
5 2 fu 1 (h̃ p) and (21)y]h

] ] ]
2(uw*) 1 (yw*) 1 (w* 1 p)

]x ]y ]h

u ] ]
2 25 g 2 (h̃ u 1 h̃ uy) 2 (h̃ uy 1 h̃ y )x y x yu ]x ]y0

]
2 (h̃ uw* 1 h̃ yw*). (22)x y]h

The slope terms on the right-hand sides of the trans-
formed momentum equations (19), (21), (22) ‘‘drive’’
the principal disturbance to the flow that we wish to
result over the (smoothed) terrain, and have been written
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as transport terms, though they may equally well be
regarded as source terms, since ]/]h(h̃xp) [ h̃x]p/]h
(etc).

5. The necessity to average the governing
equations

When we use the Navier–Stokes equations, the issue
of the meaning of the dependent variables always begs
clarification. At the very least the equations are based
on the ‘‘continuum hypothesis’’ and so ‘‘u’’ (etc.) is a
volume average within a ‘‘fluid element’’ of a size very
large with respect to the molecular mean free path, but
small with respect to the smallest scales of convective
motion, that is, small with respect to the Kolmogorov
length.

But invariably in meteorology we wish the dependent
variables to be representative over a finite (usually large)
region. In fact, properties are usually interpreted as be-
ing volume and/or time averages (e.g., ‘‘synoptic scale’’
velocity field). When in recognition of that intended
interpretation, proper averaging is applied to the con-
servation equations to obtain governing equations for
the averages themselves, we have the Reynolds equa-
tions, which explicitly display the influence on the re-
solved flow (etc.) of the unresolved flow, in the formu
of unresolved momentum fluxes.

To rationally represent terrain in an atmospheric mod-
el, there is need for even more care in defining the
atmospheric variables, for consider the lower panel of
Fig. 1. In some regions, unresolved positive terrain fluc-
tuations (h9 . 0) protrude through our lower coordinate
surface h 5 0 and into our atmosphere; elsewhere, h9
, 0, and we have atmosphere below our nominal lower
boundary. The consequence is that, whereas we should
have liked to regard our ‘‘flow variables’’ as continuous
functions of our model coordinates, u 5 u(x, y, h) (etc.),
the reality is that in some control volumes near the
(resolved) terrain surface, certain positions P 5 (x, y,
h) lie underground: at such locations, wind velocity is
of course undefined. We do not have spatial continuity,
because our atmosphere is ‘‘multiply connected.’’

This is a case important in the fluid mechanics of
porous media and in agro-meteorology (Raupach and
Shaw 1982; Finnigan 1985; Miguel et al. 2001) where
the wind blows in and around vegetation. To define flow
variables that are continuous functions of the coordi-
nates in a multiply connected space, it is possible to
introduce spatial averaging, and to derive the governing
equations for the (continuous) averages.

A spatial average

Let V 5 Vf 1 Vs 5 LxLyLh be the volume over which
we integrate to recover continuous variables, composed
of a fluid subvolume (Vf ) and a solid subvolume (Vs),
and suppose we define our averaging process as

x1L /2 y1L /2 h1L /2x y h1
F(x, y h) 5 I(x9, y9, h9)E E EVf x2L /2 y2L /2 h2L /2x y h

3 F(x9, y9, h9) dx9 dy9 dh9, (23)

where the normalizing volume

x1L /2 y1L /2 h1L /2x y h

V 5 I(x9, y9, h9) dx9 dy9 dh9.f E E E
x2L /2 y2L /2 h2L /2x y h

(24)

In Eqs. (23) and (24) I(x9, y9, h9) is an indicator function,
having unit value if the point (x9, y9, h9) lies within the
atmosphere, and vanishing otherwise. In order to ensure
that the indicator function does not vanish throughout
an entire averaging volume, Lx, Ly need to be large with
respect to the horizontal scales of the unresolved terrain
field; but to retain sufficient vertical resolution of the
vertical gradients presumably Lh K Lx, Ly (averaging
volumes are slabs). This choice for the averaging is
termed by Miguel et al. (2001) the ‘‘intrinsic (internal)
phase average,’’ while normalization using the total vol-
ume yields the ‘‘superficial (external) phase average.’’
The former seems natural in the present context, and in
any case the two averages are trivially related by the
porosity Vf /V.

Now we may perform a Reynolds decomposition F
5 1 F9, etc., and our resolved fields (velocity, etc.)F
are now (explicitly) defined as volume averages, and
are spatially continuous. For ordinary spatial aver-
aging in simply connected space, the operations of
spatial differentiation and spatial integration com-
mute; that is,

]F ]F
[ (25)

]x ]xi i

and (for any vector Fi)

]F ]Fi i[ . (26)
]x ]xi i

In the multiply connected space (x, y, h), exchange
of some arbitrary property (f) of the atmosphere with
the hidden terrain implies losses or gains of f from the
fluid subvolume of LxLyLh; these exchanges are due to
and representable as, surface integrals of exchange flux-
es of f across the air/solid boundaries. Bearing in mind
the essential form of a fluid conservation equation,

]f
5 2= · F 1 S (27)f f]t

the fluid–solid exchange of property f (that we identify
upon spatial averaging) evidently might be regarded as
having to be accounted for, either by an (additional)
apparent source, or by some modification of the flux-
divergence term upon averaging. It is the latter inter-
pretation that has been preferred, in the form of the
‘‘spatial averaging theorem’’ (e.g., Miguel et al. 2001;
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Finnigan 1985) according to which Eq. (26) must be
replaced by

]F ]F 1i i5 2 F n̂ dS, (28)E i i]x ]x Vi i

where the surface integral covers the entire surface area
of unresolved terrain within LxLyLh, and n̂i is the local
surface unit normal vector.

6. Continuum equations after spatial averaging

Since the fluxes of air across the surfaces of unre-
solved terrain vanish, no extra terms arise in the con-
tinuity equation upon spatial averaging, thus

]u ]y ]w*
1 1 5 0. (29)

]x ]y ]h

However on applying the spatial averaging to Eq. (19)
for the u momentum, we obtain:

] ]2 2(u 1 u9 1 p) 1 (u y 1 u9y9)
]x ]y

]
1 (u w* 1 u9w*9) 2 f y

]h

]p 1
25 h̃ 2 [h̃ pn̂ 2 (u 1 p)n̂x E x h x]h V

2 uy n̂ 2 uw*n̂ ] dS (30)y h

Had we retained viscous momentum fluxes in our orig-
inal momentum equations, additional surface integrals
of viscous stresses would have appeared. If , areh9 h9x y

the slopes of the unresolved terrain surface, then the
projections of the normal vector onto the x, y, h
axes are n̂ x 5 2 / , n̂ y 5 2 /2 2h9 Ï1 1 h9 1 h9 h9x x y y

, and n̂h 5 1/ . Then2 2 2 2Ï1 1 h9 1 h9 Ï1 1 h9 1 h9x y x y

Eq. (30) transforms to

] ]2 2(u 1 u9 1 p) 1 (u y 1 u9y9)
]x ]y

]
1 (u w* 1 u9w*9) 2 f y

]h

]p 1
25 h̃ 2 [(u 1 p)h9 1 ph̃ 1 uyh9x E x x y]h V

dS
2 uw*] (31)

2 2Ï1 1 h9 1 h9x y

(it is straightforward to obtain the corresponding equa-
tions for y, w*).

On first sight it may appear that one could set all
velocities to zero at the surface of the unresolved terrain,
according to the no-slip, no-leak boundary condition.
However recall we have not included the viscous terms,
and nor will we ever in any direct way represent the
microscopic topography, of clod and tussock. In the

limit of small distance from the (true) terrain, a distance
whose definition is necessarily vague, stresses are trans-
ferred onto ground by microscopic-scale form drag and
by viscous drag, on the surface roughness elements.
Ordinarily we represent this economically by relaxing
the notion that convective stresses must vanish in the
limit z → 0, for example, on flat terrain we speak of
the atmospheric surface layer as a ‘‘constant stress’’
layer, normally taken for convenience to imply that the
turbulent convective shear stresses , are con-u9w9 y9w9
stant, even as z → 0.

From model studies of wind over hills, Wood and
Mason (1993) found that ‘‘the perturbation to the net
surface force is dominated by the pressure force,’’ in
agreement with earlier assessments. If we did assume
the velocities vanish on the surface of the unresolved
terrain,6 Eq. (31) would simplify to

] ]2 2(u 1 u9 1 p) 1 (u y 1 u9y9)
]x ]y

]
1 (u w* 1 u9w*9) 2 f y

]h

]p 1 h̃ 1 h9x x5 h̃ 2 p dS. (32)x E
2 2]h V Ï1 1 h9 1 h9x y

In the last term on the rhs the slope h̃x of the smoothed
terrain should typically be much smaller than the slope

of the unresolved terrain.h9x

7. Representation of the new terms

Apart from the distinction between w and w*, a dis-
tinction that vanishes if the resolved slope is zero, the
left-hand side of Eq. (32) is familiar, and must equate
to zero if we had neither resolved, nor unresolved, ter-
rain. In that case, we should have the conventional
Reynolds equations. The Reynolds stresses, , etc.,u9w*9
express the influence on the resolved flow ( ) of theu
unresolved flow (i.e., the eddy motion hidden by the
volume-averaging process).

In parameterizing the volumetric drag term, repre-
sented formally in Eq. (32) by the surface integral, it is
a reasonable starting point to attempt to partition the
bulk terrain drag (D), as represented, for example, by
Eq. (5), into its distribution within the (unresolved) ter-
rain layer, that is, to introduce a volumetric momentum
sink:

2 2C a (x, y, h) u Ïu 1 y (33)du u

with an equivalent term in the equation. Here Cdu isy
a drag coefficient, defined with respect to the local ve-
locity; dimensionally au has units [1/length], and the
normal interpretation of it would be that it represents a

6 The question of whether or not we set velocities to zero on the
unresolved surfaces is moot; these surface integrals will need to be
parameterized anyway.
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frontal area density [m2/m3]. The sink should have the
property that, when integrated in a volume containing
the unresolved terrain, the correct total drag results; that
is,

DY /2 DX /2 h5hmax

C a (x, y, h)E E E du u

2DY /2 2DX /2 h50

D2 23 u Ïu 1 y dx dy dh 5 . (34)
r

The momentum lost from the airspace within any given
control volume is transferred to the (unresolved) terrain,
and thus constitutes a component of the total drag over
any grid cell DxDy, and a torque on the earth.

The inclusion of these extra terms in the momentum
equations will have the consequence that, except on
absolutely level ground (h̃ locally constant), there can
no longer be found a constant stress layer at the base
of the (nominal) turbulent boundary layer [an atmo-
spheric boundary layer is still presumed to exist, even
over mountains, by the physics packages of present
weather models]. This is analogous to the consequence
of resolving a forest or plant canopy layer at the base
of the atmospheric surface layer over level terrain, that
is, once we take the step of explicitly representing ‘‘in-
ternal’’ drag, rather than simply applying an effective
drag coefficient to obtain the momentum loss to the
surface, a divergence of the vertical momentum flux will
result, even in horizontally uniform flow.

Surface boundary condition

The unresolved terrain-height fluctuation h9 about h̃
is as liable to be negative as positive. An immediate
implication is that one is not compelled, in atmospheric
models over smoothed terrain, to insist upon application
of the no-slip (and no-leak) conditions along z 5 h̃(x,
y). Emeis (1987) has noted that for a steep valley ‘‘a
rotor forming in the valley prevents the main flow from
entering the valley,’’ while Mason and King (1984),
from their study of flow over a succession of ridges,
observe that ‘‘when the flow is across the valley, the
wind speeds in the valley are about 0.1 to 0.2 of those
on the summit.’’ Accordingly in some circumstances
allowing free-slip, while inexact, may be a superior op-
tion to imposing no-slip, along z 2 h̃ 5 0. In fact,
perhaps for the horizontal components one might write

]u
a 1 (1 2 a)u 5 0, (35)

]h

where a # 1 provides a terrain-sensitive variation be-
tween no-slip (a 5 0) and free-slip (a 5 1). For ex-
ample, perhaps

s h̃ha 5 (36)
DxDy

so that at sea level (h̃ 5 0), or over exceptionally even

terrain (sh 5 0), or wherever the area of the grid cell
DxDy is very large, we retain the usual treatment, that
is, no-slip.

It is pertinent that in any region for which the new
(internal) drag terms are significant in one or more layers
near ground, the precise nature of the boundary con-
dition applied (on , ) is not very important: for, justu y
as within a plant canopy, the distributed drag will ensure
small velocities occur, in the limit as z → h̃, irrespective
of the condition that is imposed at the bottom boundary.

8. Conclusions

Regardless of the progress in grid refinement, over
much of the earth’s surface there will always remain an
unresolved terrain component. Then if one wishes me-
teorological variables that are spatially continuous and
have an exact interpretation, some complication ensues.
If the dependent variables (velocity, temperature, etc.)
are defined as spatial averages in order to ensure their
spatial continuity,7 then extra terms, in the form of sur-
face integrals over unresolved terrain features, must ap-
pear in the governing equations of atmospheric (and also
oceanic) models; while over a great part of the flow
domain the extra terms may vanish numerically, they
remain present logically in the momentum equations.

In effect, these terms imply only that the enhanced
drag of formulas such as Eq. (5) is to be vertically
distributed, which is exactly what is accomplished, al-
beit arbitrarily, by Wood et al. (2001) with their analytic
profile (e2z/l) of the explicit orographic stress. Modern
NWP models provide many computational levels close
to ground, and so are capable of rational inclusion of
these terms; for example the Canadian Global Environ-
mental Multiscale model has about seven model levels
in approximately the lowest kilometer above ground.
The distributed momentum sink will change the shape
of the models’ near-ground wind profiles, and reduce
sensitivity of the near-ground wind to the (necessarily
nonphysical) boundary condition imposed along z 5
h̃(x, y).

What needs to follow is a parameterization of the
distributed drag, accounting for the state of the (model)
atmosphere (mean wind speed and direction; thermal
stratification; and perhaps turbulent kinetic energy), and
the type of unresolved terrain within any model grid
cell DxDy. Particular cases would be isotropically dis-
tributed hills of circular base, or infinitely long ridges
of a given orientation. The formulation must incorporate
the degree of organization (vs randomness) in position-
ing of features, and interactions between terrain features
(mutual sheltering). Such an approach provides an av-
enue to manipulate the vertical velocity field over spe-

7 The approach of spatial averaging may not be the only solution;
a reviewer wondered whether one might instead use line averages
along streamlines.
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cific regions, in an admittedly empirical but certainly
rational way.
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