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Abstract. Among well-mixed multi-dimensional Lagrangian stochastic (LS) dispersion models, we
observe that those in poorest agreement with observations produce ‘spiralling trajectories,’ with
an associated reduction in dispersion. We therefore investigate statistics of increments d�0 to the
orientation �0 = arctan(W 0=U 0) of the Lagrangian velocity-fluctuation vector – as a possible means
to distinguish the better LS models within the well-mixed class. ‘Zero-spin’ models, havinghd�0i = 0;
are found to provide best agreement with observations. It is not clear however, whether imposition of
the zero-spin property selects (in conjunction with the well-mixed condition) a unique model.
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1. Introduction

The most important remaining problem for Lagrangian stochastic (LS) models of
the paths of passive particles in turbulence, is to provide a criterion, further to
Thomson’s (1987) well-mixed condition (w.m.c.), that selects the uniquely correct
model from the well-mixed class (Wilson and Sawford, 1996). Multi-dimensional
LS models of first order are necessarily (Thomson, 1987; Gillespie, 1996) of the
form�

dUi = ai(Ui;Xi; t) dt+ bij(Ui;Xi; t) d�j; (1)

where dU is the velocity increment over time increment dt, a (the conditional
mean acceleration) andb are coefficients to be determined (and whose specification
depends on the nature of the turbulence), and the d�j provide Gaussian random
forcing. Thomson provided rational constraints on the specification of a, b, but in
the multi-dimensional case his w.m.c. constrainsaonly to within an unknown vector
�, whose divergence in velocity space is (however) known. For example, for a
two-dimensional (2-D) model defining trajectories in steady-state and horizontally-
homogeneous turbulence,
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@

@z
(w ga(u;w; z)); (2)

� Ui denotes the total Lagrangian velocity. In this paper we follow meteorological convention:
U will be the x-(‘alongwind’) component, and W the ‘vertical’ (z) component. In the simplest
atmospheric flows, turbulence statistics are invariant in the horizontal plane, but vary with z.
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where ga is the Eulerian joint velocity probability density function (p.d.f.). It has
been shown (Sawford and Guest, 1988) and we show here, that different models
within the well-mixed class can give substantially differing rates of dispersion.
As the LS model arguably provides the best treatment of dispersion to hand, the
non-uniqueness problem needs to be solved.

It is an interesting observation that, among a class of well-mixed models, some
have the propensity to produce ‘spiralling trajectories’, with an associated sup-
pression of the rate of dispersion. Corresponding to this deficiency, such models
produce trajectories exhibiting a Lagrangian autocorrelation function characterised
by a shorter timescale than is implied by the ‘input’ or ‘design’ timescale

TL =
2�2(z)

C0�(z)
; (3)

that is implicit in the usual specification of the model coefficients bij (in Equa-
tion (3), �2 is the turbulent velocity variance, � is the turbulent kinetic energy
dissipation rate, and C0 is a universal dimensionless constant). This observation
spawned an investigation by Borgas et al. (1997; BFS) of dispersion in (minimally)
non-isotropic homogeneous turbulence, wherein statistical properties were taken to
involve a special direction (
), with respect to which the turbulence was axisym-
metric. BFS gave a non-unique, well-mixed LS model for this flow, and derived the
implied Lagrangian velocity covariance function hUi(t)Uj(0)i and the pattern of
dispersion hXi(t)Xj(t)i. Dispersion in directions normal to the axis of symmetry
was suppressed, due to the tendency of trajectories to spiral around that axis. BFS
related their asymmetry vector
 to the mean angular momentum of a particle,

hLi = hX � Ui: (4)

The present paper stems from our feeling that a more direct criterion of trajectory
curvature is needed. hLi is not a local property of the trajectory, because it involves
reference to a coordinate origin. Since an LS model by definition provides the
Lagrangian velocity (or velocity-fluctuation) vector, it is straightforward to examine
statistics of changes in the orientation of that vector, as implied by alternative
models.

2. Statistics of Trajectory Curvature

The well-mixed condition selects a unique model for motion in a single dimension,
but not so for two- and three-dimensional motion. Our discussion will be focused
on 2-D trajectory models, but carries over easily to three dimensions. To avoid
irrelevant complexity we consider stationary, horizontally-uniform turbulence.

In the atmospheric boundary layer, trajectories exhibit curvature due to the
vertical wind shear@�u=@z. We quantify that curvature in Appendix A, but as regards
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construction of proper LS models in two (or more) dimensions, it is fruitful to focus
not on that process, but on the rotation entailed by the fluctuations, (U 0;W 0). And
although in what follows we give statistics of the change in trajectory orientation,
the mean rate of change (turning-rate) of the velocity vector is implied, and is (in
principle) a measurable Lagrangian property.

2.1. LAGRANGIAN STOCHASTIC MODEL FOR VELOCITY FLUCTUATIONS

While it is more usual to formulate LS models for the total Lagrangian velocity, it
is convenient for our purposes to split the velocity increment over time interval dt,
writing

dUi = d�ui + dU 0

i ; (5)

where the increment in the mean velocity over dt is just

d�ui = (�uj + U 0

j) dt
@�ui

@xj
: (6)

Accordingly we adopt the generalised Langevin equation

dU 0

i = ai(U
0

i ;Xi; t) dt+ bij(U
0

i ;Xi; t) d�j; (7)

where the random forcing d�j is drawn from a Gaussian distribution with vanishing
mean and variance dt. Consistency of this model with Kolmogorov’s similarity
theory of locally-isotropic turbulence requires (Thomson, 1987) that bij = �ijb

where b = (C0�)
1=2. In what follows, the meaning of a will be as according

to Equation (7) – and � will represent the corresponding partially-constrained
component of a. In the Fokker–Plank equation that defines �, the velocity pdf ga
is the pdf for velocity fluctuation.

2.2. DEFINITION OF ROTATION ANGLES

The orientation of the Lagrangian velocity-fluctuation vector is

�0 = arctan
W 0

U 0

; (8)

while its rotation ��0 over a finite (realisable) model timestep�t is

��0 = arctan
�

U 0�W 0 �W 0�U 0

U 02 +W 02 + U 0�U 0 +W 0�W 0

�
: (9)

However the finite difference is not very tractable, and so we instead analyse
statistics of the differential. Now �0 = �0(U 0;W 0), but because the velocities are
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stochastic, the differential d�’ is to be obtained not by the ordinary chain rule of
Calculus, but by application of Ito’s formula� (see Gardiner, 1983; or for application
in the context of LS models, Thomson, 1987). Accordingly

d�0 =

 
au
@�0

@U 0

+ aw
@�0

@W 0

+
b2

2
@2�0

@U 02 +
b2

2
@2�0

@W 02

!
dt

+
@�0

@U 0

b d�u +
@�0

@W 0

b d�w; (10)

and carrying out the differentiations we obtain:

d�0 =
U 0(aw dt+ b d�w)�W 0(au dt+ b d�u)

U 02 +W 02 +
(b2 � b2)U 0W 0 dt
(U 02 +W 02)2

: (11)

The second term on the rhs stems from the Ito correction, and obviously vanish-
es, but only because we have adhered to Kolmogorov similarity, i.e., scaled the
random forcing equally in the two stochastic equations. As we consider station-
ary, horizontally-homogeneous turbulence, we henceforth drop the prime on W ,
assuming �w = 0.

We may decompose d�0 into deterministic and random parts, d�0 = d�0d + d�0r.
The deterministic part is

d�0d � hd�0;U;W;Zi =
U 0aw �Wau

U 02 +W 2 dt; (12)

and is the expected rotation, given the particle’s preceding values of velocity and
position. The ‘fluctuating rotation’ is

d�0r = b
U 0 d�w �W d�u
U 02 +W 2 : (13)

The latter is ‘model-independent’ (no dependence on the� vector), with vanishing
mean value since hd�ii = 0, and has variance

hd�02r i =
b2 dt

U 02 +W 2 ; (14)

(the variance of d�0 about the mean value d�0d for prescribed U 0, W ). Given that
we shall later suggest a new selection constraint (for well-mixed LS models) that
specifies only the mean rotation angle, it is reassuring that the ‘fluctuating rotation’
is model-independent.

� We are indebted to an anonymous reviewer for correcting us on this important point.
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Unconditional statistics of d�0 are obtained by taking the probability-averaged
integrals over U 0 �W space. For example, the expected value for d�0, given that
particle position Z = z, is:

hd�0; zi =
Z
1

�1

Z
1

�1

hd�0;U 0;W; zi ga(U
0;W; z) dU 0 dW; (15)

and in view of Equation (12),

hd�0; zi = dt
Z
1

�1

Z
1

�1

U 0aw �Wau
U 02 +W 2 ga(U

0;W; z) dU 0 dW: (16)

The well-mixed condition gives for the ai:

au =
�u

ga
+
b2

2
@ ln ga
@U 0

=
�u

ga
+
b2

2
1
ga

@ga

@U 0

aw =
�w
ga

+
b2

2
@ ln ga
@W

=
�w

ga
+
b2

2
1
ga

@ga

@W

: (17)

Substituting into Equation (16) we have:

hd�0; zi = dt
Z
1

�1

Z
1

�1

U 0�w �W�u
U 02 +W 2 dU 0 dW

+
b2 dt

2

Z
1

�1

Z
1

�1

�
U 0

U 02 +W 2

@ga
@W

�
W

U 02 +W 2

@ga
@U 0

�
dU 0 dW: (18)

Equation (18) provides the basis upon which we may diagnose mean trajectory
rotation hd�0; zi, as implied by various Lagrangian stochastic models, for various
types of turbulence. For simplicity we shall call LS models for which hd�0i = 0,
that is, models in which there is no preferred direction of rotation of the velocity-
fluctuation vector, ‘zero-spin’ models – admitting that this is a misuse of the term
‘spin’. In Section (3) we shall examine well-mixed 2-D models for the wind-tunnel
dispersion data of Legg et al. (1986), showing that those doing the best job of
calculating spread are zero-spin models.

3. Trajectory Curvature in Multi-Dimensional Gaussian Turbulence

By definition, in two-dimensional Gaussian turbulence the Eulerian velocity fluc-
tuation pdf is

ga(u
0; w) =

1
2��

exp

 
�
u02�2

w + w2�2
u + u0wu2

�

�2

!
; (19)
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where �2 = �2
u�

2
w � u4

�
, u2

�
= �hu0wi. It is of significance to the integrations

which will follow that ga is either (when u
�
= 0) perfectly even (symmetric) on

the u0,w axes, or at least (u
�
6= 0) has opposite quadrant symmetry in u0�w space.

3.1. AXI-SYMMETRIC, HOMOGENEOUS, GAUSSIAN TURBULENCE

Borgas et al. (1997) considered dispersion in 3-D Gaussian turbulence, for which the
turbulence was assumed to be minimally anisotropic, the departure from isotropy
owing to the existence of a ‘special direction’, 
, here taken to be aligned along
the y axis,
 = (0, 
, 0). They introduced a particular (but not unique) well-mixed
model,

ai = �
Ui

T
+ �ijk
jUk = �

Ui

T
+ (
� U)i; (20)

wherein the additional component of the conditional mean acceleration acts per-
pendicular to the plane containing 
 and Ui. With 
i = (0, 
, 0) the conditional
mean acceleration reduces to,

au = �
U

TL
+
W; av = �

V

TL
; aw = �

W

TL
� 
U: (21)

Now suppose we look at projections of the motion onto the x� z and y� z planes,
and define

� = arctan
W

U
; � = arctan

V

U
: (22)

It is easy to show that:

hd�;U; V;W i =
Uaw �Wau

U2 +W 2 dt = �
 dt; (23)

whence it follows at once upon averaging in velocity space that there is non-zero
spin, hd�i = �
 dt. Similarly,

hd�;U; V;W i =
Uav � V au
U2 + V 2 dt = �
 dt

V W

U2 + V 2 : (24)

Since this is odd in V (andW ) it vanishes upon averaging overV (orW ): hd�i = 0.
This provides a perspective on the novel aspect of the Borgas et al. model for
axisymmetric turbulence: the chosen � results in mean curvature of trajectories,
which manifests as spiralling about the axis defined by the special direction 
.
If we reduce to the fully isotropic case (� = 0), we have hd�i = hd�i = 0, and
more-rapid dispersion results.
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3.2. GAUSSIAN INHOMOGENEOUS TURBULENCE

We retain the earlier-given (general) forms forau, aw (which involve the only partly
constrained non-uniqueness vector with components�u,�w), but adopt specifically
the Gaussian pdf ga(U 0;W ) for substitution into Equation (18). It can be shown by
a tedious but straightforward integration that any well-mixed model (for U 0, W )
in Gaussian turbulence, provided it is consistent with the Kolmogorov similarity
theory, has:

hd�0; zi = dt
Z
1

�1

Z
1

�1

U 0�w �W�u
U 02 +W 2 dU 0 dW: (25)

To obtain this result it is helpful to transform to polar coordinates s = (U 02 +
W 2)1=2, arctan(W=U 0), and to bear in mind the symmetry of ga, namely ga(�U 0,
�W )� ga(U

0,W ). In view of this symmetry, any term in (U 0�w�W�u)=ga that
involves a factor (U 0)mW n with (m+n) odd will make no contribution to hd�0; zi
through the integral in Equation (25).

Now, several well-mixed models (varying in their specification of�) have been
proposed for multi-dimensional Gaussian turbulence.

3.2.1. Thomson’s (1987) Model for Gaussian Turbulence
Thomson’s model for the total velocity (U;W ) corresponds (to first order in dt) to
the following model� for the velocity fluctuation (U 0;W ):

�u

ga
= �

1
2
@u2

�

@z
+

1
2�2

�

 
U 0W

 
�2
w

@�2
u

@z
� u2

�

@u2
�

@z

!
+W 2

 
u2
�

@�2
u

@z
� �2

u

@u2
�

@z

!!
; (26)

�w

ga
=

1
2
@�2

w

@z
+

1
2�2

�

 
U 0W

 
u2
�

@�2
w

@z
� �2

w

@u2
�

@z

!
+W 2

 
�2
u

@�2
w

@z
� u2

�

@u2
�

@z

!!
: (27)

Multiplying by the velocities, substituting into Equation (25), and integrating, it
follows that hd�0; zi = 0 (this is because in each term of the integrand (U 0)mW n

appears with m+n odd). Thomson’s well-mixed multi-dimensional LS model for
Gaussian turbulence is a ‘zero-spin’ model.

3.2.2. Borgas’ Model for Gaussian Turbulence
Rodean (1996) has provided a derivation of the following well-mixed model for
Gaussian turbulence – here simplified to the steady-state, horizontally-homogen-

� Obtained by subtracting the term W @�u=@z from Thomson’s au, which follows from the fact
over the interval dt, d�u = (W dt)@�u=@z.
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eous case; this model was first given by Sawford and Guest (1988), and attributed
to M. Borgas. The � vector in 2-D is:

�u

ga
= �

@u2
�

@z
+
u2
�

�2

@�2

@z
�
u2
�

�2

@�u

@z
(�2

wU
0 + u2

�
W )

�W
@�u

@z
+

u2
�

2�2

 
@�2

w

@z
�
�2
w

�2

@�2

@z

!
U 02

+
u2
�

�2

 
@u2

�

@z
�
u2
�

�2

@�2

@z

!
U 0W

+
u2
�

2�2

 
@�2

u

@z
�
�2
u

�2

@�2

@z

!
W 2; (28)

�w
ga

=
@�2

w

@z
�
�2
w

2�2

@�2

@z
+
�2
w

�2

@�u

@z
(�2

wU
0 + u2

�
W )

+
�2
w

2�2

 
�2
w

�2

@�2

@z
�
@�2

w

@z

!
U 02

+
�2
w

�2

 
u2
�

�2

@�2

@z
�
@u2

�

@z

!
U 0W

+
�2
w

2�2

 
@�2

u

@z
�
�2
u

�2

@�2

@z

!
W 2: (29)

Multiplying by the appropriate velocities for evaluation of Equation (25), we
obtain a non-vanishing contribution to hd�0; zi. The Borgas well-mixed model
for Gaussian turbulence is not a zero-spin model. As we shall show, this correlates
with its giving generally the poorest agreement (among LS models we studied)
with observed rates of dispersion.

3.2.3. Flesch and Wilson Model
In the more general context of non-Gaussian turbulence, Flesch and Wilson (1992)
introduced a well-mixed model designed to have the property that � should act
so as not to change the orientation of the velocity-fluctuation vector (this model
has been generalised to three dimensions by Monti and Leuzzi, 1996). Since the
Flesch-Wilson model has

U 0�w �W�u = 0; (30)

it follows immediately from Equation (25) that it is a zero-spin model, in the case
of Gaussian turbulence. But Flesch and Wilson noted the possibility (however
improbable) of very large accelerations occurring according to this model. While
that may not in practise be important, it remains a troublesome point.
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3.3. COMPARISON OF WELL-MIXED GAUSSIAN MODELS WITH DISERSION
EXPERIMENTS

We have applied two-dimensional Thomson, Borgas, and Flesch–Wilson LS models
to simulate dispersion in and above a model plant canopy, in wind tunnel flow (Legg
et al., 1986; hereafter LRC). We have elsewhere (Flesch and Wilson, 1992) given
our choice of flow statistics, derived from the data provided by the authors. We
must point out that velocity statistics of this flow are highly non-Gaussian, and
that it is therefore inappropriate to apply LS models intended for Gaussian flows.
However Flesch and Wilson have already shown that Gaussian models provide, in
fact, a very good simulation of the experiments. The Flesch–Wilson model here
assumes Gaussian velocity statistics, like the other models.

Figure 1 compares the observed rate of spread, from a line source in the flow,
with the predictions of each of the LS models. Also shown are the unique 1-D
LS model for Gaussian turbulence, which incidentally is in poor agreement with
the observations near the source; and another model, described in the next section.
Figure 1 indicates that available 2-D well-mixed models differ in their prediction of
the rate of dispersion in the LRC flow, and that the zero-spin models both provide
excellent agreement with the observations, whereas the Borgas model, not a zero-
spin model, underestimates the rate of spread. This is similar to what has been
found in the case of homogeneous turbulence: spiralling of trajectories reduces the
rate of dispersion. Figure 2 shows that the � fields of the Thomson and the Borgas
models are very different for the LRC flow. This brings us to the question, is there
a constraint on �, in addition to the w.m.c., that ensures a zero-spin model?

4. Tailoring � to Minimize Trajectory Looping

Many atmospheric flows involve ‘organised’ rotation – tornados, building wakes,
the convective boundary-layer, etc. Presumably however, that rotation would enter
LS models through the mean velocity field. It is not obvious that one would ever
wish to ‘design in’ a ‘biased’ rotation of the Lagrangian velocity – fluctuation
vector – although possibly criteria with respect to (e.g.) hd�02i, the variance of the
fluctuating rotation, might prove useful (at present we have no observations of that
statistic). Then supposing one wished to tailor� to obtain a zero-spin model, how to
proceed? In general, Equation (18) provides an implicit specification constraining
� to ensure spinless velocity-deviation.� But we have been unable to extract from
it an explicit (and therefore usable) condition.

� Recall that in LS models for the total Lagrangian velocity, � is to be augmented by the amount

(Uj � �uj)
@�ui

@xj
ga:
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Figure 1. Lagrangian stochastic simulations of dispersion of heat from an elevated line source within
a model plant canopy in a wind tunnel, in comparison with observations ( ) by Legg et al. (1986).
The length scale h is canopy height. The temperature scale T � = Q=(�cphsUs), where Q is the
source strength [W m�1], hs is the source height, and Us is the mean windspeed at source height.
Error bars give the standard error of the mean resulting from a set of independent simulations with
each model. Legend identifies these models: 1-D, The unique well-mixed LS model for 1-D Gaussian
turbulence; DT, Thomson model for multi-dimensional Gaussian turbulence; MB, Borgas model
for multi-dimensional Gaussian turbulence; FW, Flesch–Wilson model; IR-2, Well-mixed model for
Gaussian turbulence based on irrotational �=ga.

Figure 2. The�=ga fields of the Thomson (DT) and Borgas (MB) well-mixed LS models for Gaussian
turbulence, evaluated at height z=h = 0:85 in the wind-tunnel flow of Legg et al. (1986).
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On the other hand we note that an arbitrary non-divergent but rotational vector
�S=ga (i.e. having zero divergence but non-zero curl; such a vector is called
‘solenoidal’) can be added to �=ga without altering the value ofr� (�=ga), which
is constrained by the wmc. Accordingly we hypothesize (but have not proven) that
LS models having �=ga irrotational, will be ‘zero-spin’ models. But even if this is
true, the relationship is generally not reciprocal: for although (as shown earlier) the
Thomson multi-dimensional Gaussian model is a zero-spin model, the solenoidal
component of its � field is non-zero. In the case of steady-state, two-dimensional,
horizontally-uniform, Gaussian turbulence, even were the shear stress to vanish,
Thomson’s specification for �=ga has non-vanishing curl:

r�
�

ga
=
U 0

2
@ ln�2

u

@z
: (31)

4.1. NUMERICAL DETERMINATION OF AN IRROTATIONAL �=ga FIELD

We invoke the Helmholtz decomposition theorem,� and determine an (irrotational)
� as

�i

ga
= �

@ 

@u0i
: (32)

Application of the w.m.c. results in an equation

@2 

@u02i
=

1
ga

 
@ga

@t
+

@

@xi
(u0iga)�

@ 

@u0i

@ga

@u0i

!
; (33)

for the scalar field  (ga is the pdf for the velocity fluctuation). We solved Equation
(33) numerically, to obtain the field of �=ga at each of 300 levels on the range
0 � z � 6h (h the canopy height) for the LRC flow. The integration was performed
on a rectangular domain:

�10�u � U � �u � 10�u
�10�w �W � 10�w

; (34)

with resolution 0.2�u, 0.2�w, specifying that the normal gradient n � r of at the
boundaries (n being a unit vector normal to the boundary) should vanish.�� During
the subsequent LS simulations, � was determined at any location (U 0;W;Z) by
interpolation from the grid.

A simulation of the LRC dispersion experiment using this irrotational �=ga
model is shown on Figure 1. There is no (statistically) significant difference between

� With some reservation as to its applicability, for the theorem is predicated on some conditions.
�� It is not clear which are the correct boundary conditions. However we found that except very

close to the boundaries, the solution is not very sensitive to the choice made.
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this simulation and those of the zero-spin models� (Thomson, Flesch-Wilson), and,
all three provide quite good agreement with the measurements – whereas the Borgas
model does not. It is characteristic of the non-zero-spin Borgas model, that particles
move on counter-clockwise looping trajectories.

5. Conclusion

Well-mixed LS models for which there is a preferred direction of rotation (hd�0; zi 6=
0) of the Lagrangian velocity-fluctuation vector give rise to looping trajectories,
and a reduced rate of dispersion. In a particular case we examined (dispersion in
a model plant canopy within a wind tunnel), zero-spin models provided good (and
generally indistinguishable) agreement with observations. Thus we suggest that a
supplementary specification (beyond enforcing consistency with ga by imposing
the wmc) to reduce membership of the class of well-mixed multi-dimensional LS
models, is the requirement that hd�0; zi = 0. However as far as we can tell, this
does not select a unique well-mixed, zero-spin model. Nor are we able to provide
an explicit recipe for � that results in the zero-spin property, though it is plausible
that the requirement �=ga be irrotational might suffice.

Finally, an unambiguous definition of ‘looping’ of particle trajectories is needed.
Let P (x2; t2 j x1; t1) be the transition probability density, from position x1 at time
t1 to the region of x2 at later time t2. Then P (x; t j x; t0) is the probability
density for a return at time t > t0 to a location earlier occupied, and quantifies the
probability density for ‘looping’ relative to fixed coordinates. The requirement that

@P (xi; t j xi; t0)

@t
� 0 8t; 8xi; (35)

seems one possible mathematical prescription for ‘no-looping’ (again, relative to
fixed coordinates). Now, P (x; t j x; t0) is just the concentration at (x; t) due to
the release of unit mass at x at time t = t0. It follows immediately from the mass
conservation equation that condition (35) requires

@Fi

@xi
� 0 8 t > t0; (36)

where Fi is the mean flux density subsequent to a unit release at (x; t0). This seems
a sensible result, requiring that the spatial field of the mean vector mass flux density
which results from the release of unit mass at the point x should be such as to never
increase the concentration at x. Unfortunately, Equation (36) raises no explicit
constraint on the coefficients of the LS model. But in any case, it is probably more
relevant to prohibit trajectory ‘looping’ as seen in a drifting frame of reference. In
the highly restrictive case of a flow having a constant and spatially-uniform mean

� The �=ga fields for the other models are analytical, so need not be obtained numerically.
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velocity field (U), the probability density for ‘looping’ in a coordinate frame that
moves with the mean flow is P (x +U(t � t0); t j x; t0): it seems unlikely that
an explicit constraint on model coefficients would ensue from constraining this
density function.
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Appendix A: Trajectory Curvature in 1-D Turbulence

In the case of atmospheric turbulence, fluctuations u0 in horizontal windspeed are
much smaller than the mean wind �u = �u(z), except very close to the ground. It is
therefore common to construct one-dimensional LS models of atmospheric disper-
sion in the x–z plane, models that ascribe to the particle the velocity vector (�u;W ),
i.e., exclude the alongwind fluctuation. We shall consider the trajectory rotation
that arises in such treatments. The change dU in (total) Lagrangian alongstream
velocity over dt is just

dU = dZ
@�u

@z
=W dt

@�u

@z
; (37)

while the (stochastic) increment in vertical velocity is

dW = aw(W;Z) dt+ b d�w: (38)

Then the conditional mean rotation of the (�u;W ) vector is easily shown to be

hd�;W;Zi =
�uaw(W;Z) �W 2@�u

@z
�u2 +W 2 dt+

b2�u dtW
(�u2 +W 2)2

; (39)

where the second term on the rhs stems from the Ito correction.
For example we may consider Gaussian 1-D turbulence, for which the Eulerian

vertical velocity pdf is:

ga(w; z) =
1

p
2��w(z)

exp

 
�

w2

2�2
w(z)

!
: (40)
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The implied (and unique) well-mixed 1-D model is (Thomson, 1987)

aw(W;Z) = �
W

TL(z)
+

1
2
@�2

w

@z

 
1 +

W 2

�2
w

!
; (41)

where we note that the drift correction part of this is even (symmetric) inW . Then,

hd�;W; zi =

�u

 
�

W

TL(z)
+

1
2
@�2

w

@z

 
1 +

W 2

�2
w

!!
�W 2@�u

@z

�u2 +W 2 dt

+
b2�u dtW

(�u2 +W 2)2
: (42)

Now,

hd�; zi =
Z
1

�1

hd�;W; zi ga(W; z) dW: (43)

Since ga is even in W and hd�;W;Zi is a sum of even and odd contributions, the
integral decomposes into the integrals of even and odd functions of W : only the
even part is non-zero, and it follows that:

hd�; zi
dt

= A(z) � exp

 
�u2

2�2
w

!
erfc

�
j�uj

p
2�w

�

�

"
p
�A

j�uj
p

2�w
�

p
�

2
p

2�w

�u

j�uj

@�2
w

@z

#
; (44)

where

A(z) = �
@�u

@z
+

�u

2�2
w

@�2
w

@z
: (45)

In the neutrally-stratified and horizontally-homogeneous atmospheric surface layer
(NSL), the verical profile of the mean wind is

�u(z) =
u
�

kv
ln
�
z

z0

�
; (46)

where kv (=0.4) is von Karman’s constant, u
�

is the friction velocity and z0 is the
surface roughness length. Thus for the NSL, A = �u

�
=(kvz).

Random flight simulations (for the NSL, and for linearly-sheared Gaussian
homogeneous turbulence) have confirmed Equations (44, 45). Not surprisingly,
according to our analysis, and believably in reality, trajectories preferentially curve
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(clockwise) in the mean shear. An interesting case would be the region at the top
of a crop canopy: where there are large positive values of both @z�u and @z�w.
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