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Abstract. By considering two analytical solutions of G. I. Taylor (1921) for dispersion in homo- 
geneous turbulence, we derive a quantitative upper limit for the timestep d t to IX used in the 
stochastic Lagrangian model; a more severe upper limit will probably exist in inhomogeneous 
turbulence. For practical purposes, there is no lower limit to the timestep. 

1. introduction 

When undertaking a discrete time simulation of turbulent dispersion using the 
Lagrangian stochastic (trajectory-simulation) approach, it is necessary to choose 
an appropriate timestep. As a guiding principle, one should choose a timestep 
which is much smaller than the smallest of all significant timescales in the 
physical system to be simulated. This leaves open the question as to what 
timescales must be considered significant, and in general this decision rests with 
the knowledge of the scientist. 

The simplest case is that of the dispersion of marked fluid elements in 
homogeneous and stationary turbulence, for which we have available two exact 
solutions due to Taylor (1921) - a continuous-time solution, and also an analy- 
tical solution for the outcome of discrete-time simulations of the continuous 
system. In this paper, we shall discuss what limitations exist (in principle and in 
practice) on the choice of the timestep for simulation of dispersion in homo- 
geneous turbulence by making use of Taylor’s solutions. Restrictions which are at 
least as severe must arise for more general systems in which the existence of 
inhomogeneity may impose further criteria. To our surprise, we have found that 
errors arising from the choice of what hitherto seemed a reasonably small 
timestep, dt = 0.2 TL, where TL is the Lagrangian integral timescale, may amount 
to 5% (error in the calculated plume width) at times greater than TL. 

2. Analytical Solutions and a Discrete-Time Model 

Consider the release at (2, t) = (0,O) of a marked fluid element into homogeneous 
2 turbulence specified by vertical velocity variance w , and a Lagrangian auto- 
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correlation function RL( 6) having an integral timescale TL = kc? RL(,f) dr. Taylor 

(1921) showed that the ensemble-averaged spread of the marked fluid elements 

at time I is given by 

&)=2i7 (r-t)R,(t)dt, 
I 
0 

(1) 

It is straightforward to show that when t+ T,, the form of the autocorrelation is 
2 not relevant and that the spread depends only on w and TL. 

A very useful transformation of Equation (I) may be made by noting that the 

autocorrelation function and the Lagrangian velocity spectrum S,,,(f) are a 

Fourier Transform pair, 

m 

S,(f) = 4w2 j- RL(~) cos(277ft) d5, 
0 

m 

(24 

RL(@ = j- &(f)l~) cOS(277fO df , 
0 

and in consequence (Pasquill and Smith, 1983), one may write 

2(t) = t2 
I 

sin2 mft 
SdfQj+f. 

(1 

(2b) 

(3) 

This equation shows that the ‘lowest’ frequencies in the velocity spectrum are 
most effective in bringing about plume dispersion, and that as r increases, the 

effectiveness rests with ever lower frequencies. We shall make use of this 

equation in Section 4. 

We shall now outline a standard discrete-time model of this problem. The 
position of the fluid element at time f = n dt is 

n 

z(n dt) = 2 Azk , 
k=l 

where Azk = wk dt. We shall assume the velocity time series is to be generated by 

the Markov chain 

wk+l = awl, + prk+, , (9 

where (Y is the correlation between consecutive discrete velocity samples and the 

term firk+l is a random change, the product of a normalising factor /3 (defined 

below) and r&+1, a random number drawn from a Gaussian distribution having 
zero mean and unit variance. (By the Central Limit Theorem, equally acceptable 
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results follow with ri randomly chosen as +l or -1, provided that the time t of 
interest greatly exceeds dt.) 

By manipulating Equation (5) it is easy to show that, to attain the desired 
velocity variance, one requires /3 = m a,, where v,,, is the velocity standard 
deviation. Similarly, the correlation between velocities separated by an arbitrary 
number of timesteps can be shown to be R(k dt) =[R(dt)]’ = ak so that, to 
ensure CT=, R(k dt) dt = T,, one requires (Y = 1 -dt/T,. 

There are several ways to justify the use of Equation (5). Firstly, it is the 
simplest numerical procedure by which one may obtain a velocity series having 
the correct velocity variance and autocorrelation timescale (which Taylor’s 
solution proves are the only factors governing the rate of spread in homogeneous 
turbulence for t% T,). Secondly, theoretical arguments have been given (Lin, 
1960; van Dop et al.. 1985; Haworth and Pope, 1986) that this model is implied 
by the Navier-Stokes equations for the case of very high Reynold’s number 
turbulence. And thirdly, one may appeal to the agreement of observations with 
such a model (Hanna, 1979). 

To carry out a discrete simulation of the dispersion problem, one must specify 
the physical scales, initialise the Markov chain ( w1 = a,~,), and select a value for 
the timestep: say 

dt = pTL (cc< 1). (6) 

The outcome of a discrete simulation of spread in homogeneous turbulence 
may be anticipated, because it is easy to calculate the ensemble mean value of 
r’(ndl)=(dz, +dz*+. . . + dz,)‘. The result was given by Taylor (1921; the 
unnumbered equation preceding his Equation (2)). However we believe Taylor’s 
formula is wrong; for example, setting n = 1 in that equation, one obtains for the 
mean square displacement after only one step, a result which is held to depend 
upon a, the correlation of that step with the (as yet untaken) second step. We 
believe that the formula should read 

- 
?(ndt)= w’dr’ n+2~” 

,-I+(!+),-. 

(I -a-‘)* I 

- = w2 dt2 n +2(n - I)@ 
[ 

2a2(1 - a”-‘) 
1-a - 1 (l-cu)2 ’ 

(74 

(7b) 

Our result (7b) differs from Taylor’s only in that, where we have (n - 1) 
appearing in the second and third terms on the right-hand side, Taylor has n. If, 

z for example, we set u = 0.9, the normalised spread 2/(w dt*) after n = 2 steps is 
predicted to be 3.80 (our equation) as opposed to 7.22 (Taylor’s equation). 
Numerical simulation confirms our result. 

We are now in a position to discuss various limitations on the choice of the 
timestep. 
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3. Lower limit to the Timestep 

No matter how small the timestep dt, the Markov chain will generate a velocity 
series which has the Markovian property, i.e., 

p(wk+lI Wkr wk-1,. . . , WI) = fdwk+ll wk) . (8) 

The acceleration of a real fluid element is correlated over a time interval of the 
order of T., the acceleration timescale, which is of the order of the Kolmogorov 
timescale. Therefore a real velocity series at increments dt< T,, cannot be 
Markovian and Equation (5) is in principle correct only under the restriction that 
dt& TA (Legg and Raupach, 1982). One could not use the Markov chain with a 
very small timestep d t 4 TA and achieve a realistic calculation of the spread at 
very short travel times r - Th. In practice, however, one is not interested in such 
a short travel time, and the choice of a timestep smaller than TA should have no 
adverse consequences. (In a similar way, the use of a random walk with 
independent increments is physically realistic only if the timestep. and thus the 
travel time, exceed the velocity correlation timescale - the use of a timestep 
dt< TL would in such a case have no deleterious effect on the prediction of the 
spread at 2% TL but would not give correct results at small t no matter how small 
the timestep.) Thus we believe that for practical purposes, there is no lower limit 
to the choice of the timestep. 

In order to give an intuitive understanding of the fact that unlimited decreases 
in the timestep (higher resolution trajectories) do not result in any alteration in 
the rate of dispersion, it is useful to examine the relationship between the 
generated (simulated) velocity spectrum and the timestep employed. In the 
appendix, it is shown that if a velocity series is generated using the Markov chain 
Equation (5), the power spectrum of that velocity series is 

1 -CY2 
a2 - 2cx cos(2mfdt) ’ 

for 0 s f” fN where f,,, = l/(2 dt) is the Nyquist frequency. It is easy to show that 

and 

sm -=44L(1 +2+4T,. 7 
WL 

I, 
(11) 

It follows from Equation (11) that, provided p < 0.1, the spectral density at the 
origin is within 5% of its limiting value as dt+O. 

Power spectra corresponding to simulation of trajectories with differing values 
of the timestep are not identical because a reduction in dt results in a spectrum 
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which extends to a higher frequency, because the power spectrum for the random 
Gaussian variable r is S,(f) = l/fN and has more power at low frequency. We 
know from Taylor’s Equation (1) that the spread (at given t) should not change 
as dt+O, yet the velocity spectrum which is effective in causing the (simulated) 
spread does change as dr * 0. The insensitivity of the spread to the alterations in 
the Lagrangian spectrum as dt varies is a consequence of the fact that, as 
indicated by Equation (3), the low frequency end of the spectrum is most 
effective in contributing to the spread - and at the low frequency end, there is 
little variation in the spectrum as dr takes on different values less than about 
0.1 TL. 

4. Upper Limit to the Timestep 

It is certain that one must ensure dt< TL: otherwise the efectiue correlation time 
will default to dt, because the velocity cannot persist for a time which is less than 
the timestep. However one would like to know just how much smaller than TL 
the timestep must be, because the generation of trajectories requires much 
computer time and one is often tempted to increase the timestep. Most authors 
have used dt = 0.1 TL or dr = 0.2 TL. 

The question is easily resolved by comparing Taylor’s analytical solution for 
the discrete process (which explicitly involves the timestep) with his time- 
continuous solution (which does not involve any timestep). We have evaluated 
the continuous time solution for the case of an exponential autocorrelation 

R(S) = exp(-0 7’~). (12) 

Calculations were performed for a system having TL = 1, a,,, = 1. Table I 
tabulates both analytical solutions for the plume width o,(t) = 2”’ and the 
percentage error in the discrete solution relative to the continuous solution as a 
function of the ratio dr/T, for a range of travel times t. It is apparent that with a 
timestep as large as 0.25TL, an error in the spread amounting to more than 5% 
occurs for relatively long (far field) travel times, while a doubling to 0.5 TL yields 
an error exceeding 10%. The implication is that before attempting to incorporate 
complexities such as streamwise velocity fluctuation, wlocity cross-correlation, 
etc., in order to attain very close agreement (error < 5%) with experiment, the 
user of this type of model should ensure that the timestep is suffciently small. For 
homogeneous turbulence, a timestep dr = 0.1 TL is sufficiently small to hold the 
discretisation error in the plume width to about 2%. 

These results may have been anticipated on the basis of the earlier-examined 
dependence of S,(O) on drlTL: as the timestep becomes large, the spectral 
density at low frequency decreases and, by Equation (3), we expect a simulation 
to underestimate the spread. 
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TABLE I 

Discrete and continuous solutions (~9 and afU, respectively) for the plume width q as a function of 
travel time r/TL, showing the percentage error in the discrete solution for each of several values of 

the timestep AI/T,. 

At/T, 

r/TL=O:5 
(a:” =.0.462) 

&a 

l/T,. = 1.0 
(a:‘* = 0.858) 

dir *z Error (%) 
_- 

0.01 
0.05 
0.1 
0.25 
0.50 

Ar/TL 

0.01 
0.05 
0.1 
0.25 
0.50 

At/T, 

0.461 
0.461 
0.461 
0.468 
0.500 

t/T,=2 
(CT:- = 1.51) 

*is 0, 

1.51 
1.50 
1.49 
1.47 
1.44 

t/T,-= 10 
(u;~. = 4.24) 

dir =z 

Error (%) 

-0.04 
-0.11 
-0.04 

1.3 
8.3 

Error (%) 

-0.1 
-0.6 
-1.2 
-2.7 
-4.7 

Error (%) 

0.857 
0.855 
0.853 
0.85 I 
0.866 

t/TL=S 
(cry= 2.83) 

dis (+I 

2.83 
2.80 
2.78 
2.69 
2.55 

t/ TL = 50 
(UC,‘*= 9.90) 

afs 

-0.07 
-0.32 
-0.56 
-0.76 

0.96 

Error (%) 

-0.2 
-1.0 
-1.9 
-4.‘) 
-9.9 

__- 

Error (%) 

0.01 4.23 -0.2 9.87 -0.3 
0.05 4.20 -1.1 9.78 -1.2 
0.1 4.15 -2.3 9.65 -2.5 
0.25 4.00 -5.7 9.27 -6.3 
0.50 3.74 -11.8 8.60 -13.1 

5. Conclusion 

There is no lower limit to the choice of a timestep for the Lagrangian stochastic 
dispersion model. However, an upper limit of dt = 0.1 TL is suggested if one 
wishes to be sure that time discretisation causes an error of less than about 2%. If 
an error of the order of 15% is acceptable (still a small error compared to likely 
errors stemming from the use of cruder types of dispersion model), the timestep 
may be as large as 0.5TL. These results can readily be extended to the case of a 
longer travel time than given here. 

No rigorous extension to inhomogeneous turbulence is possible, but the 
limitation is unlikely to be less severe. To give an example, in the neutral 
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atmospheric surface layer, the Lagrangian timescale varies with height as T, = 
azlu,, with a - 0.5 (Sawford, 1985; there is uncertainty surrounding the exact 
value of a). Defining a length scale L = u,TL, we obtain an ‘inhomogeneity 
timescale’ T* = L dTJdr = aTL. But we began by stating the principle that the 
timestep should be much smaller than the smallest of the significant timescales. 
Therefore, since T* < TL, it is possible that the timestep must be restricted more 
severely in this case than in the homogeneous case. 

Appendix: The Velocity Spectrum Generated by the Markov Chain 
We assume an infinite record length, sampled at intervals dt. In such a circum- 
stance we may define a Fourier Transform pair as (Otnes and Enochson, 1972; 
“Type II” transform): 

X(f)=dt f xrexp[-j2rrfrdr], 
r=--m 

I/2 dt 

x(t) = 
I 

Wf)exp[j’W~ldf. 

-1/2dt 

With this definition, Fourier transformation of Equation (5) yields the result 
that the Fourier Transform of w(t) is 

W(f) = G(f) P 
exp[j2rfdt]- cy ’ 

where G(f) is the Fourier Transform of the time series of the random Gaussian 
variable. Multiplying both sides by the complex conjugate and noting that the 
spectrum of the random noise is white out to the Nyquist frequency, S,(f) = l/f,, 
we obtain Equation (9). 
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