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Abstract. In this paper, we lay the foundations of a systematic mathematical
formulation for the governing equations for flow through an urban canopy (e.g.,
coarse-scaled building array) where the effects of the unresolved obstacles on the
flow are represented through a distributed mean-momentum sink which, in turn,
implies additional corresponding terms in the transport equations for the turbulence
quantities. More specifically, a modified k-ε model is derived for the simulation of
the mean wind speed and turbulence for a neutrally-stratified flow through and over
a building array, where groups of buildings in the array are aggregated and treated
as a porous medium. This model is based on time averaging the spatially-averaged
Navier-Stokes equation, in which the effects of the obstacle-atmosphere interaction
are included through the introduction of a volumetric momentum sink (representing
drag on the unresolved buildings in the array).

The k-ε turbulence closure model requires two additional prognostic equations,
namely one for the time-averaged resolved-scale kinetic energy of turbulence, κ,
and another for the dissipation rate, ε, of κ. The transport equation for κ is derived
directly from the transport equation for the spatially-averaged velocity and explicitly
includes additional sources and sinks that arise from time averaging the product of
the spatially-averaged velocity fluctuations and the distributed drag force fluctua-
tions. We show how these additional source/sink terms in the transport equation for
κ can be obtained in a self-consistent manner from a parameterization of the sink
term in the spatially-averaged momentum equation. Towards this objective, the
time-averaged product of the spatially-averaged velocity fluctuations and the dis-
tributed drag force fluctuations can be approximated systematically using a Taylor
series expansion. A high-order approximation is derived to represent this source/sink
term in the transport equation for κ. The dissipation rate (ε-) equation is simply
obtained as a dimensionally consistent analog of the κ-equation. The relationship
between the proposed mathematical formulation of the equations for turbulent flow
within an urban canopy (where the latter is treated as a porous medium) and an
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earlier heuristic two-band spectral decomposition for parameterizing turbulence in
a plant canopy is explored in detail.

Keywords: Urban winds, Disturbed winds, Wind models, Drag coefficient, Turbu-
lence closure, Canopy flows

1. Introduction

The turbulent flow within and over urban areas covered with agglomer-
ations of discrete buildings, often with irregular geometry and spacing,
is generally very complex and possesses a fully three-dimensional statis-
tical structure. Although the application of computational fluid dynam-
ics (CFD) to the prediction of the mean flow and turbulence near and
around a single building or within and over a regular array (or, canopy)
of buildings is progressing (e.g., Smith et al., 2000; DeCroix et al., 2000;
Lien et al., 2003; Lien and Yee, 2003a), this method requires extensive
computational resources. Nevertheless, CFD simulations which involve
the solution of the conservation equations for mass, momentum, and
energy allow the prognosis of a number of velocity statistics (e.g., mean
velocity, normal stresses, shear stresses, etc.) in an urban canopy. The
knowledge of the structure of the mean flow and turbulence describing
the complex flow patterns within and over clusters of buildings is also
essential for improving urban dispersion models.

Unfortunately, the computational demands of CFD where all build-
ings are resolved explicitly in the sense that boundary conditions are
imposed at all surfaces (e.g., walls, roofs) are so prohibitive as to
preclude their use for emergency response situations which require
the ability to generate an urban flow and dispersion prediction in a
time frame that will permit protective actions to be taken. In view of
this, we argue that for many practical applications it is convenient to
consider the prediction of statistics of the mean wind and turbulence
in an urban canopy that are obtained by averaging horizontally the
mean wind and turbulence statistics over an area that is larger than
the spacings between the individual roughness elements comprising the
urban canopy, but less than the length scale over which the roughness
element density changes.

This is the second in a series of three papers describing the nu-
merical modelling of the spatially developing flow within and over a
3-D building array. In the first paper (Lien and Yee, 2003a; henceforth
I), we used the Reynolds-averaged Navier-Stokes (RANS) equations in
conjunction with a two-equation turbulence model (i.e., k-ε model) to
predict the complex three-dimensional disturbed flow within and over a
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 3

3-D building array under neutral stability conditions. The simulations
of the mean flow field and turbulence kinetic energy were validated with
data obtained from a comprehensive wind tunnel experiment conducted
by Brown et al. (2001). Here, it was demonstrated that the mean flow
and turbulence kinetic energy from the numerical and physical sim-
ulations exhibited striking resemblances. In addition, the importance
of the kinematic ‘dispersive stresses’ relative to the spatially-averaged
kinematic Reynolds stresses for a spatially developing flow within and
over an urban-like roughness array has been quantified using the high-
resolution CFD results obtained with the high-Reynolds-number k-ε
model. In the third paper (Lien and Yee, 2003b; henceforth III), we
apply the modified k-ε model derived in the present paper whereby
the unresolved obstacles in the 3-D building array are represented as a
distributed momentum sink for the prediction of the spatially-averaged
mean flow and turbulence field within and over the 3-D building array
studied in I. In addition in III, we compare these predictions with
those obtained by spatially-averaging the mean flow and turbulence
quantities obtained from the high-resolution RANS simulation in I.

In this paper, we focus on the mathematical formulation of a nu-
merical model for the prediction of flows within and over a building
array based on an aggregation of groups of buildings in the array into
a number of ‘drag units’, with the ensemble of units being treated as a
continuous porous medium. This approach will obviate the need to im-
pose boundary conditions along the surfaces of all buildings (and other
obstacles) in the array. Wilson and Yee (2000) applied something like
this approach to simulate the mean wind and turbulence energy fields
in a single unit cell of the wind tunnel “Tombstone Canopy” (Raupach
et al., 1986), a regular diamond staggered array of bluff (imperme-
able) aluminum plates, with a disappointing outcome (subsequent work
showed that invoking a Reynolds stress closure did not help). We now
know this may owe to the existence of (previously unsuspected) large
eddies generated by the strong shear layer near the top of the canopy,1

eddies that span more than one unit cell in the streamwise direction,
and imply that imposition of an artificial condition of periodicity at the
boundaries of a single cell amounts to solving a different flow problem.
Belcher et al. (2003) applied a similar approach to investigate the ad-
justment of the mean velocity to a canopy of roughness elements using
a linearized flow model (obtained by determining analytically small

1 These large-scale (coherent) eddy structures generated at or near the canopy top
have been observed using highly resolved, two-dimensional laser-induced fluorescence
measurements of the fine structure of the fully space- and time-varying conserved
scalar field resulting from a point-source release of a tracer within the “Tombstone
Reloaded Canopy” in a water channel simulation (Yee et al., 2001).
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perturbations to the undisturbed upstream logarithmic mean velocity
profile induced by the drag due to an obstacle array).

There is precedent for treating drag on unresolved buildings in an
urban canopy by means of a distributed momentum sink for the repre-
sentation of the effects on the mean flow and turbulence arising from
the form and viscous drag on canopy elements. As motivation, we recall
that a similar approach has been applied over the past 50 years to the
modelling of flows in plant canopies and about porous windbreaks.
Although a sink or drag term has been added in an ad hoc fashion to
the free-air mean momentum equation to model the canopy mean wind
profile over a number of years (e.g., Inouye, 1963; Uchijima and Wright,
1964; Cowan, 1968; among others), it was not until 1977 that Wilson
and Shaw (1977) showed how to apply a rigorous spatial-averaging pro-
cedure to obtain the equations for a spatially-continuous area-averaged
mean wind and turbulence field. In this seminal work, Wilson and Shaw
(1977) demonstrated how additional source and sink terms represent-
ing the flow interaction with the canopy elements emerge naturally by
application of a particular spatial averaging procedure to the Reynolds-
averaged Navier-Stokes equations that obtain at every point in the
canopy airspace. This procedure was further developed by Raupach
and Shaw (1982) for the case of a horizontal plane averaging operation.
In particular, Raupach and Shaw (1982) discuss two different options
for averaging over a horizontal plane; namely, horizontally averaging
the equations of motion at a single time instant over a plane extensive
enough “to eliminate variations due to canopy structure and the largest
length scales of the turbulent flow” (scheme I) and conventional time
averaging of the equations of motion followed by horizontal averaging
over a plane large enough “to eliminate variations in the canopy struc-
ture” (scheme II). Scheme I has rather limited applicability since it
cannot be applied to horizontally inhomogeneous canopies.

Finnigan (1985) and Raupach et al. (1986) investigated the volume-
averaging method. Finnigan (1985) considered details such as plant
motion (e.g., coherently waving plant canopies) which gives rise to
a ‘waving production’ term in the transport equations for turbulence
quantities. We note that plant motion is not a factor directly pertinent
to the present work which focusses on urban canopy flows, but these
concepts may have a bearing on the case of moving obstacles (e.g.,
vehicles) within the urban canopy. Following ideas of Hanjalic et al.
(1980) and parallelling Shaw and Seginer (1985), Wilson (1988) devel-
oped an empirical two-band model for the turbulence kinetic energy
(TKE) which represented the large- and fine-scale components of the
turbulence and their dynamics [the multiple time-scale approach has
seen much subsequent use (e.g., Schiestel, 1987), but parameterizing
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 5

the exchange of kinetic energy between the spectral bands is a pre-
eminent difficulty of the approach]. Here, the turbulence kinetic energy
was separated into two wave-bands, corresponding to shear kinetic
energy (SKE, low-frequency band) and wake kinetic energy (WKE,
high-frequency band), with separate equations developed to represent
their dynamics. Wilson (1985), Green (1992), Wang and Takle (1995a),
Wang and Takle (1995b), Liu et al. (1996), Ayotte et al. (1999), Sanz
(2003), and Wilson and Yee (2003) investigated various modifications
of the k-ε model or the Reynolds stress transport model to account for
interaction of the air with canopy elements.

Here, we present details of the mathematical framework required
to derive the transport equation for the time average of the locally-
spatially-averaged velocity through a building array (which is treated
here as a porous medium), and the two additional prognostic equations
required to close this equation set. These additional equations predict
the time-averaged resolved-scale kinetic energy of turbulence, κ, and
its dissipation rate, ε. The closure problem relating to the ‘correct’
representation of the additional source/sink terms in the transport
equations for mean momentum, turbulence energy, and dissipation rate
is investigated in detail. Most of the work reported is motivated by
conceptual and logical difficulties in the self-consistent treatment of
source and sink terms in the transport equations for turbulence kinetic
energy and its dissipation rate. To this end, we attempt to lay the
foundations for a systematic mathematical formulation that could be
used to construct the additional source/sink terms in the transport
equations for κ and ε, in response (and to some extent, contradiction) to
the assertions made by Wilson and Mooney (1997) that it is “impossible
to know the ‘correct’ influence of the unresolved processes at the fence
on TKE and its dissipation rate” and by Wilson et al. (1998) that “k-
ε closures give predictions that are sensitive to details of ambiguous
choices”.

2. Spatial and Time Averaging Operations

Before we begin, we present a short note on the notation that will
be used. The following derivations will invariably use the flexibility
of the Cartesian tensor notation, with Roman indices such as i, j,
or k taking values of 1, 2, or 3. We shall also employ the Einstein
summation convention in which repeated indices are summed. For any
flow variable φ, 〈φ〉 will denote the spatial (volume) average, φ the time
average, φ′ the departure of φ from its time-averaged value, and φ′′ the
departure of φ from its spatially-averaged value. In addition, ui is the
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total velocity in the xi-direction, with i = 1, 2, or 3 representing the
streamwise x, spanwise y, or vertical z directions. Finally, x ≡ (x, y, z),
(u1, u2, u3) ≡ (u, v, w), and t denotes time.

The derivation of a model for the spatially-averaged time-mean flow
can start either from applying the spatial averaging operation to the
time-averaged Navier-Stokes (NS) equation (〈NS 〉), or the time averag-
ing operation to the spatially-averaged Navier-Stokes equation ( 〈NS〉 ).
Also, the concept of spatial filtering is fundamental to large-eddy simu-
lation. The reader is referred to Ghosal and Moin (1995) and Vasilyev et
al. (1998) for the application of spatial filtering in the context of large-
eddy simulation. In all these applications, to formulate the ‘simplified’
equations of motion, we must choose a suitable decomposition of a flow
property into its rapidly and slowly varying components and determine
a strategy for applying the corresponding averaging operation. First,
consider spatial averaging of the flow in some multiply connected space
(viz., space in which not every closed path or contour within the space
[set] is contractable to a point). In a “slow + fast” decomposition2 of
a flow property φ based on spatial filtering, scales are separated by
applying a low-pass scale filter to give a filtered quantity 〈φ〉 defined
by

〈φ〉(x) =
∫

a.s.
G(x − y)φ(y) dy ≡ G ? φ. (1)

The integral in Equation (1) is assumed to be over all space (a.s.).
Here, G(x − y), the convolution filter kernel, is a localized function
(i.e., G → 0 as ‖x− y‖ → ∞, where ‖ · ‖ denotes the Euclidean norm)
with filter width ∆ which is related to some cutoff scale in space, and ?
is used to denote the convolution operation. In general, the filter width
can depend on x, which we will explicitly indicate using the notation
G
(
x− y

∣∣∆(x)
)
.

If we assume that G is a symmetric function of x− y, and differen-
tiate Equation (1) with respect to xi, we get the following relationship
between the spatial average of the spatial derivative and the spatial
derivative of the spatial average of a quantity φ which could be a
scalar or component of a vector (on application of the Gauss divergence

2 The difficulty of this approach is that for fluid turbulence in plant or urban
canopies, there is no real (unambiguous) separation between the large (slow) and
small (fast) scales of motion, so the “slow + fast” decomposition referred to here
should perhaps be interpreted more correctly as merely a convention.

3d_drag_pt2.tex; 8/01/2004; 7:39; p.6



MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 7

theorem):
〈

∂φ

∂xi

〉
− ∂〈φ〉

∂xi
≡
[
G?,

∂

∂xi

]
φ

= −
(

∂G

∂∆
? φ

)
∂∆
∂xi

+
∫

S
G
(
x − y

∣∣∆(x)
)
φ(y)ni dS, (2)

where S denotes the sum of all obstacle surfaces contained in the multi-
ply connected region (extending over all space), ni is the unit outward
normal in the i-th direction on the surface S (positive when directed
into the obstacle surface), and [f, g] ≡ fg−gf denotes the commutator
bracket of two operators f and g. Equation (2) will be referred to as the
generalized spatial averaging theorem. A special case of this theorem
(known as the spatial averaging theorem) has been derived by Raupach
and Shaw (1982) and Howes and Whitaker (1985).

The spatial filtering operation does not commute with spatial differ-
entiation. The non-commutation of these two operations results from
two contributions. The first contribution is encapsulated in the first
term on the right-hand-side of Equation (2) which arises from the
spatial variation in filter cutoff length ∆(x). The second contribution,
summarized in the second term on the right-hand-side of Equation (2),
is due to the presence of obstacle surfaces in the multiply connected
flow domain. Interestingly, if we apply the spatial-averaging operator to
the continuity equation, the spatial variation in the filter width implies
that 〈ui〉 is no longer solenoidal. More specifically, although the veloc-
ity across the air/solid boundaries vanishes owing to the no-slip and
impermeability boundary conditions here, the spatial variation of the
filter width implies an extra source/sink term in the filtered continuity
equation [which is a direct consequence of Equation (2)]:

∂〈ui〉
∂xi

= −
[
G?,

∂

∂xi

]
ui =

(
∂G

∂∆
? ui

)
∂∆
∂xi

6= 0, (3)

since ∆ = ∆(x).
To ensure that the spatially-averaged velocity field is solenoidal, we

consider a special convolution kernel whose filter cutoff length does not
depend on x. To this purpose, consider the box or top-hat filter defined
as (although any other filter function with a fixed filter width would
have been suitable also)

G
(
x − y

)
=
{

1/V, if |xi − yi| < ∆i/2;
0, otherwise. (4)

3d_drag_pt2.tex; 8/01/2004; 7:39; p.7



8 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

Here, V = ∆1∆2∆3 ≡ ∆x∆y∆z is the constant volume over which
we average to obtain continuous variables. With the constant width
filter kernel of Equation (4), the spatial average of a flow property φ of
Equation (1) becomes simply

〈φ〉(x, t) =
1
V

∫

V
φdV ≡ 1

V

∫

V
φ(x + r, t) dr. (5)

Note that in Equation (5), the averaging volume includes both fluid and
solid parts (obstacles) [viz., the integral of φ is extended over the entire
averaging volume and divided by its measure]. Hence, in the spatial
average of Equation (5), the value of φ is averaged over both the fluid
and solid parts with the implicit assumption that φ vanishes identi-
cally inside the solid parts.3 Applying the volume-averaging operator of
Equation (5) to the continuity equation results in a spatially-averaged
velocity field 〈ui〉 that is solenoidal.

We will use the spatial-averaging operation displayed in Equation (5),
where the average is taken over both the fluid and solid phases in V
(averaging volume), and the normalizing factor is the total volume V .
For two-phase systems, two other definitions for averaging have been
proposed (e.g., Miguel et al., 2001). In a two-phase system, the total
averaging volume V is made up of the volume of the fluid phase Vf and
the solid phase Vs, so V = Vf + Vs. The superficial (external) phase
average of φ is defined as

〈φ〉e =
1
V

∫

Vf

φdV (6)

and the intrinsic (internal) phase average of φ is defined as

〈φ〉i =
1
Vf

∫

Vf

φdV. (7)

The intrinsic phase average is an average of a flow property over the
fluid phase (i.e., the averaging volume Vf excludes the solid phase, with
the normalizing factor being Vf ). On the other hand, the external phase

3 It could be argued that φ is strictly undefined within the solid parts (phase) of
the averaging volume V and, hence, the averaging volume V should strictly extend
over the fluid part (airspace) only, with the solid parts being excluded. This is, in
effect, the external or internal phase average of φ defined later in Equations (6) and
(7), respectively. Adopting the convention that φ vanishes identically within the
solid parts of the averaging volume, it can be seen that 〈φ〉 = 〈φ〉e (viz., the spatial
average of φ coincides exactly with the external phase average of φ). However, it is
important to note that 〈〈φ〉〉 6= 〈〈φ〉e〉e owing to the fact that the external phase
average does not follow the usual rules for Reynolds averaging, whereas the simpler
spatial average defined by Equation (5) does.
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 9

average is a weighted average of the fluid property over the fluid phase
(i.e., the total volume V is used as the normalizing factor, but the
averaging excludes the solid phase). If we define the porosity (volume
fraction of the fluid phase) as ξ ≡ Vf/V , then it can be seen the intrinsic
and external phase averages of φ are related as 〈φ〉e = ξ〈φ〉i.

The spatial (or, volume) average defined in Equation (5) seems
natural in the present context, and leads to the simplest forms for
the volume-averaged transport equations on application of the volume-
averaging operator to the continuity and the Reynolds equation for
mean momentum at a single point. Although V is a constant that is
independent of the spatial coordinates, Vf which represents the vol-
ume of the fluid phase contained within V need not be (e.g., for an
inhomogeneous canopy, Vf and Vs will be a function of the spatial
coordinates). Because Vf depends on x in Equation (7) (i.e., the filter
width depends on x), the use of the intrinsic phase average will result
in a filtered velocity that is not solenoidal [cf. Equation (3)]. Even so,
transport equations for the intrinsic phase-averaged velocity 〈ūj〉i can
be derived, provided that the fluid-phase volume Vf (x) is differentiable
(or, equivalently, that the porosity ξ ≡ Vf/V is a differentiable function
of x) although this will result in a number of ‘extra’ source/sink terms
in these equations arising solely from the dependence of Vf on the
spatial coordinates.4 These ‘extra’ source/sink terms, arising from the
spatial variation of the volume fraction (porosity), will necessarily com-
plicate the equations of motions based on the intrinsic phase average in
comparison with those based on the simple spatial (volume) average of
Equation (5). In particular, setting φ ≡ 1 in Equation (2) and assuming
that G is the top-hat filter exhibited in Equation (4), we obtain the
result that

∂ξ

∂xi
= − 1

V

∫

S
ni dS. (8)

In deriving Equation (8), we used the fact that 〈1〉 = 〈1〉e = ξ〈1〉i = ξ.
Hence, the volume-averaged transport equations for 〈φ〉i (φ ≡ ūj, j =

4 Spatial variation in the filter width (e.g., ∆(x) = V
1/3

f (x) as used in the intrinsic
phase averaging operation) implies additional energy transfer mechanisms (both
local energy drain and backscatter) between the resolved and sub-filter scales of the
flow, resulting in the ‘extra’ source/sink terms alluded to here. These additional
sources of local energy drain and backscatter will depend on the specific local filter-
width variations (or, equivalently, on the porosity in our case). Indeed, these local
filter width variations could lead to the apparent destruction of a local resolved flow
structure as it is advected by the flow from a region of small filter width to one
with large filter width (previously resolved-scale flow feature now becomes a sub-
filter scale flow feature); or, alternatively, to the apparent ‘spontaneous’ emergence
of a resolved-scale flow pattern from a collection of sub-filter scale patterns as these
patterns are advected from a region of large filter width to one of small filter width.
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10 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

1, 2, 3) will necessarily include additional source/sink terms involving
surface integrals of the form of Equation (8) devolving solely from the
spatial variation in the porosity ξ.

The external phase average does not seem natural in the present
context because 〈〈φ〉e〉e 6= 〈φ〉e (or, equivalently, 〈φ′′

e〉e 6= 0 where φ′′
e ≡

φ − 〈φ〉e [viz., deviation of φ from its external phase average value]).5

In other words, 〈·〉e is difficult at worst (inconvenient at best) to work
with, since this averaging operator is not a Reynolds operator satisfying
the usual rules for Reynolds averaging.

In analogy with the spatial (or, volume) average defined in Equa-
tion (5), the time average6 of φ, which we denote using an overbar, will
be defined as

φ̄(x) =
1
T

∫ t0+T

t0
φ(x, t) dt, T1 � T � T2. (9)

In view of Equations (5) and (9), time and spatial averaging commute so
〈φ〉 = 〈φ〉. In Equation (5), the horizontal averaging scales ∆x, ∆y need
to be large compared to the separation between individual roughness
elements, but much less than the characteristic length scales over which
the density of the roughness elements changes; but to ensure a sufficient
vertical resolution of the flow property gradients, ∆z � ∆x,∆y making
V a thin, horizontal slab. In Equation (9), the averaging time T is
implicitly assumed to be sufficiently long to ensure that many cycles of
the rapid turbulent fluctuations in a flow property are captured, but
sufficiently short so that the external large-scale variations in the flow
property are approximately constant. Hence, in Equation (9), T1 and
T2 denote the time scales characteristic of the rapid and slow variations
in the flow property φ, with the implicit assumption that T1 and T2

differ by several orders of magnitude.

5 Note that after spatial averaging, a flow property φ is a continuous function
of the coordinates in a multiply connected space. Hence, even though φ vanishes
identically (or, alternatively, is undefined) in the solid phase within V , its spatially-
averaged value 〈φ〉e is continuous and nonzero (and, consequently, well-defined) in
the entire averaging volume V , so 〈〈φ〉e〉e 6= 〈φ〉e.

6 In this paper, we assume implicitly that the meteorological variables are de-
scribed (approximately or better) by a stationary random process, for which the
time average can be meaningfully defined. For a non-stationary random process, it
is necessary to replace the time average used here with the ensemble average (viz.,
the average of a quantity φ, as a function of space x and time t, over an “ensemble”
of realizations of φ measured under a particular set of mean weather conditions).
In view of this, the time-averaging operation used in this paper can be replaced by
the ensemble-averaging operation, so that it is correct henceforth to interpret φ as
either the time- or ensemble-average of φ.
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 11

In general, φ can be decomposed in the following two ways:

φ = φ̄ + φ′, φ′ = 0, (10)

or
φ = 〈φ〉 + φ′′, 〈φ′′〉 = 0. (11)

Although 〈NS〉 = 〈NS〉 owing to the commutation of time and spatial
averaging operations, space-time filtering and time-space filtering of
the Navier-Stokes equation lead to two different decompositions for the
turbulent stress tensor, a quantity that needs to be modelled (viz., the
turbulence closure problem). The subtle (but important) differences in
these two decompositions for the turbulent stress tensor (arising from
either a space-time or time-space filtering of the nonlinear convective
term in the Navier-Stokes equation) will be elucidated in the following
sections.

3. Spatial Average of the Time-Averaged NS Equation

The spatial average of the time-averaged NS equation (or spatial aver-
age of the RANS equation) has been described in detail by Raupach
and Shaw (1982) as their scheme II, Raupach et al. (1986), Ayotte et al.
(1999), and others. Consequently, only some final results are summa-
rized here for later reference. The spatially-averaged RANS equation
for the prediction of the spatially-averaged time-mean velocity 〈ui〉 is

∂〈ūi〉
∂t

+
∂〈ūj〉〈ūi〉

∂xj
= −∂〈p̄〉

∂xi
+

∂τij

∂xj
+ f̄i, (12)

with
τij ≡ −〈u′

iu
′
j〉 − 〈ū′′

i ū
′′
j 〉 + ν

∂〈ūi〉
∂xj

, (13)

and
f̄i =

ν

V

∫

S

∂ūi

∂n
dS

︸ ︷︷ ︸
viscous drag

− 1
V

∫

S
p̄nidS

︸ ︷︷ ︸
form drag

. (14)

Here, p̄ is the kinematic mean pressure, f̄i is the total mean drag
force per unit mass of air in the averaging volume composed of the
sum of a form (pressure) drag and a viscous drag, and τij is the
spatially-averaged kinematic total stress tensor. In Equation (14), ν
is the kinematic viscosity, S is the part of the bounding surface in-
side the averaging volume V that coincides with the obstacle sur-
faces, ni is a unit normal vector in the i-th direction pointing from
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12 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

V into S (viz., directed from the fluid into the solid surface), and ∂/∂n
denotes differentiation along the direction normal to the surface S.
The lack of commutativity between filtering and spatial differentia-
tion [cf. Equation (2)] causes every spatial derivative operator in the
Reynolds-averaged Navier-Stokes equation to generate terms that can-
not be expressed solely in terms of the time-mean, spatially-averaged
velocity fields. In consequence, a “closure problem” is introduced not
only for the nonlinear convective term, but also for some of the linear
terms as well (e.g., the mean pressure gradient and viscous diffusion
terms give rise to the additional form and viscous drag terms on spa-
tial averaging). Finally, we note that the spatially-averaged kinematic
Reynolds stresses 〈u′

iu
′
j〉 and kinematic dispersive stresses 〈ū′′

i ū
′′
j 〉 are

a direct consequence of the spatial averaging of the time-averaged
nonlinear convective term uiuj ; viz.,

〈uiuj〉 = 〈ūi〉〈ūj〉 + 〈u′
iu

′
j〉 + 〈ū′′

i ū
′′
j 〉. (15)

The last term on the right-hand-side of Equation (15) is the disper-
sive stress which arises from the spatial correlation in the time-mean
velocity field varying with position in the averaging volume V . Al-
though Ayotte et al. (1999) rigorously derive the transport equation
for 〈u′

iu
′
j〉, the extra source/sink terms in their proposed model for

the spatially-averaged second central velocity moments u′
iu

′
j , which

they denote as dij (contribution to the total dissipation arising from
the canopy interaction processes), were obtained from an approximate
expression for the work done by the fluctuating turbulence against the
fluctuating drag force. The latter was derived in the context of the time
average of the spatially-averaged NS equation. Mixing the spatially-
averaged RANS formulation with the time-averaged, spatially-averaged
NS formulation results in a mathematical inconsistency in the approach
described by Ayotte et al. (1999).

In the next section, we formulate the equation set for the time-
averaged, spatially-averaged NS approach. The approach taken here is
similar to that proposed by Wang and Takle (1995a) and Getachew et
al. (2000).

4. Time Average of Spatially-Averaged NS Equation

The spatial average of the nonlinear convective term uiuj in the Navier-
Stokes equation can be expanded as follows:

〈
uiuj

〉
=
〈 (

〈ui〉 + u′′
i

)(
〈uj〉 + u′′

j

) 〉
= 〈ui〉〈uj〉 + 〈u′′

i u
′′
j 〉. (16)
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 13

Using the decomposition for the spatially-averaged nonlinear convective
term of Equation (16), and applying the spatial averaging theorem in
Equation (2) with the filter kernel defined in Equation (4), the spatially-
averaged NS equation assumes the form

∂〈ui〉
∂t

+
∂〈uj〉〈ui〉

∂xj
= −∂〈p〉

∂xi
+

∂Tij

∂xj
+ fi, (17)

where
Tij = −〈u′′

i u
′′
j 〉 + ν

∂〈ui〉
∂xj

, (18)

and
fi =

ν

V

∫

S

∂ui

∂n
dS − 1

V

∫

S
pnidS. (19)

We remind the reader that the application of local spatial-averaging to
ui to give 〈ui〉 smooths (attenuates) the fluctuations at scales below
the filter width ∆, but that the spatially-averaged velocity 〈ui〉 still
exhibits turbulent fluctuations at scales larger than ∆. However, 〈ui〉
is now a turbulent quantity that is continuous in space.

Time-averaging Equation (17) gives the time-averaged, spatially-
averaged Navier-Stokes equation 〈NS〉 as

∂〈ūi〉
∂t

+
∂〈ūj〉〈ūi〉

∂xj
= −∂〈p̄〉

∂xi
+

∂τij

∂xj
+ f̄i, (20)

where

τij ≡ −〈u′
i〉〈u′

j〉 + Tij = −〈u′
i〉〈u′

j〉 − 〈u′′
i u

′′
j 〉 + ν

∂〈ūi〉
∂xj

, (21)

and f̄i here is the same as f̄i defined in Equation (14).
From Equations (12), (13), (20) and (21), the following relationship

holds:
〈u′

iu
′
j〉 + 〈ū′′

i ū
′′
j 〉 = 〈u′

i〉〈u′
j〉 + 〈u′′

i u
′′
j 〉. (22)

Equation (22) is the necessary and sufficient condition for 〈NS〉 =
〈NS〉. The total stress tensors τij, defined in either Equation (13) or
Equation (21) are identical (hence, the same notation is used here for
these two quantities), although the individual terms in their sums are
different. We note that the physical character of the term 〈u′′

i u
′′
j 〉 is dif-

ferent from the conventional dispersive term 〈ū′′
i ū

′′
j 〉. The conventional

dispersive stresses 〈ū′′
i ū

′′
j 〉 in the spatially-averaged RANS equation

correspond to stresses arising from correlations in the point-to-point
variations in the time-averaged (mean) velocity field. However, the ‘dis-
persive’ flux term 〈u′′

i u
′′
j 〉 in the time-average of the spatially-averaged
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14 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

NS equation corresponds to stresses arising from correlations (obtained
using space-time averaging) of large wavenumber (or frequency) veloc-
ity fluctuations u′′

i ≡ (1 − G) ? ui where 1 is the identity operator
with respect to the convolution operation (which, in this case should
be interpreted as the Dirac delta function) and G is the top-hat filter
defined in Equation (4) (viz., correlation in the sub-filter motions with
characteristic wavenumber greater than ≈ π

/
∆, where ∆ ≡ V 1/3 is the

width of the spatial filter).7 Alternatively, this dispersive stress term
can be described simply as the time average of the local-scale spatial
covariance 〈u′′

i u
′′
j 〉 of two components of the local spatial anomaly in

velocity. It is not clear a priori how 〈u′′
i u

′′
j 〉 is related to 〈ū′′

i ū
′′
j 〉.

From the turbulence modelling point of view, in this paper and III
we will model 〈u′

i〉〈u′
j〉 in Equation (21) using the Boussinesq eddy

viscosity (νt) closure as follows:

〈u′
i〉〈u′

j〉 =
2
3
δijκ − νt

(
∂〈ūi〉
∂xj

+
∂〈ūj〉
∂xi

)
. (23)

Here κ and νt are defined as

κ ≡ 1
2
〈u′

i〉〈u′
i〉, νt = Cµ

κ2

ε
, (24)

and ε is defined as

ε ≡ ν
∂〈u′

i〉
∂xk

∂〈u′
i〉

∂xk
. (25)

In Equation (24), Cµ is a closure (empirical) constant taken to be
0.09 as in the standard k-ε model for turbulence closure (Launder and
Spalding, 1974). We note that κ is the resolved-scale kinetic energy
of turbulence (viz., κ embodies the energetics of turbulent flow in the
resolved scales of motion with wavenumber less than ≈ π/∆), so κ is
the time-averaged resolved-scale turbulence kinetic energy. In addition,
since the filter in Equation (5) is positive (volume averaging), κ is
necessarily a non-negative definite quantity.

To make further progress, we assume

〈u′′
i u

′′
j 〉 � 〈u′

i〉〈u′
j〉 (26)

in the present study (viz., we will simply neglect the term 〈u′′
i u

′′
j 〉 for

expediency since no reference data exists at this time to guide its mod-
elling). Even so, it is possible to construct a structural model for the

7 Recall that spatial filtering of the instantanenous velocity field using Equa-
tion (2) introduces a length scale into the description of the fluid dynamics, namely
the width ∆ ≡ V 1/3 of the filter used.
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 15

‘conventional’ dispersive stress tensor (see Appendix A) by applying a
regularization to the nonlinear convective term in the RANS equation.
Before we derive the model equations for κ and ε, let us examine the
momentum sink fi (arising from the pressure and viscous forces created
by the obstacle elements in V ) in the spatially-averaged NS equation
[cf. Equations (17) and (19)]. We require a parameterization for fi,
which is the drag force exerted by the obstacle elements on a unit mass
of air in V .

To proceed, we note that heuristic correlations of experimental data
for flow through a porous medium (Scheidegger, 1974) show that at low
speeds the pressure drop (drag force) caused by viscous drag is directly
proportional to the (volume-averaged) velocity (Darcy’s law). However,
this relationship needs to be modified at higher velocities to account
for an increase in the form drag (inertial effects). Experimental obser-
vations indicate that the pressure drop (drag force) for a general flow
through a porous medium is proportional to a linear combination of flow
velocity (arising from viscous resistance due to the obstacle boundaries)
and the square of flow velocity (arising from resistance due to the iner-
tial forces).8 For the current application, where the obstacle elements
are unresolved and the aggregation of obstacle elements in the urban
canopy is treated simply as a porous medium, this phenomenologically-
based law can be formulated quantitatively in terms of the following

8 Experimental observations indicate that the pressure drop (or drag force) for
uni-directional flow in the x-direction in the bulk of a porous medium is described
quantitatively as

fx ≡ δP

δx
= − ν

Kp
〈u〉 − CDÂ〈u〉2,

where P is the kinematic pressure (pressure normalized by fluid density), ν is the
kinematic fluid viscosity, Kp is the permeability of the porous medium, CD is the
drag coefficient, Â is the frontal area density, and 〈u〉 is the spatially-averaged
(volume-averaged, or Darcian) velocity in the x-direction. In accordance with me-
teorological convention, we have used the drag parameter CDÂ to parameterize
the inertial effects, rather than following the porous media convention (Scheidegger,

1974) where the drag parameter is replaced by Fr/K
1/2
p where Fr is the Forchheimer

constant (so, the identification CDÂ ↔ Fr/K
1/2
p can be used to convert between

these two conventions). Finally, this phenomenological relationship for the drag force
exerted by the porous medium on the flow, which is specific for flow in the x-
direction, can be generalized to the tensorial representation of Equation (27) by
re-casting it in terms of the spatially-averaged velocity vector 〈ui〉 and the scalar
(invariant) 〈ui〉〈ui〉 to give a form for the relationship that is valid in an arbitrary
inertial frame of reference.
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16 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

covariant tensorial representation (for non-Darcian flow):

fi = − ν

Kp
〈ui〉

︸ ︷︷ ︸
fV i

−CDÂ
(
〈uj〉〈uj〉

)1/2〈ui〉︸ ︷︷ ︸
fF i

, (27)

where ν is the kinematic fluid viscosity, Kp the permeability, CD the
element drag coefficient, and Â the frontal area density (frontal area of
obstacles exposed to the wind per unit volume). In Equation (27), fV i

and fF i refer to the viscous and form drag contributions, respectively,
to the total drag term.

The drag coefficient CD depends on the permeability Kp, the Rey-
nolds number ReKp = U

√
Kp
/
ν (U ≡ (〈ui〉〈ui〉)1/2 is a characteristic

local velocity) and the microstructure of the porous medium (or, equiv-
alently, the geometrical and topological structure of the plant or urban
canopy). Indeed, CD through its functional dependence on Kp must
depend on the porosity and on the overall morphology of the pore
space (air space) between the canopy elements and, as such, is a phe-
nomenological parameter that must encapsulate, in an averaged sense,
the effects of the obstacles on producing the complex point-to-point
variations in fluid motions that take place in the air space between
the canopy elements. For simplicity, we assume that fV i � fF i in
Equation (27), implying that the drag force term can be parameterized
using the following common formulation

fi = −CDÂ
(
〈uj〉〈uj〉

)1/2〈ui〉. (28)

It will be shown in III that the assumption fV i � fF i is valid for a
coarse-scaled cuboid obstacle array.9 The diagnosis of the drag coeffi-
cient CD as a function of position (x, z) within the urban canopy for a
spatially developing flow through the canopy will be undertaken in III.

Following from this parameterization, f̄i (time-averaged momentum
sink) in Equation (14) is required to be modelled (approximated) as

f̄i = −CDÂ
(
〈uj〉〈uj〉

)1/2〈ui〉. (29)

Substituting 〈ui〉 = 〈ūi〉 + 〈u′
i〉 into Equation (28) and using the bino-

mial series to approximate the square root term up to second order in
9 Equation (28) is the conventional parameterization for the drag force used in

modelling fine-scaled plant canopy flows, but it should be emphasized that in this
application the approximation that fV i � fF i is probably poorer than in the case
of coarse-scaled urban canopy flows (especially deep in the plant canopy where wind
speeds are low). For example, Thom (1968) reported that the ratio of form to viscous
drag (skin friction) was about 3 to 1 for bean leaves at typical wind incidence angles.
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MATHEMATICAL FOUNDATION OF DRAG FORCE APPROACH 17

the velocity fluctuations 〈u′
i〉 (or, equivalently, truncation of the Taylor

series expansion of the square root term at second order in the ex-
pansion (order) parameter δ ≡ |〈u′

i〉|
/(
〈ūj〉〈ūj〉

)1/2),10 an approximate
form for fi that is appropriate for time averaging can be derived as

fi ≈ −CDÂQ

(
〈ūi〉 +

〈ūi〉〈ūj〉〈u′
j〉

Q2
+ 〈u′

i〉

+
〈u′

i〉〈ūj〉〈u′
j〉

Q2
+

〈ūi〉〈u′
j〉〈u′

j〉
2Q2

)
+ O(δ3), (30)

where Q ≡
(
〈ūi〉〈ūi〉

)1/2 is the magnitude of the spatially-averaged,
time-mean wind speed.11

The approximation for fi in Equation (30) involves an orderly ex-
pansion about a local, volume-averaged mean flow state 〈ūi〉. The ex-
pansion about this mean flow state suggests that the ratio of the
turbulence kinetic energy to the mean flow kinetic energy is small

10 Strictly speaking, absolute convergence of the binomial series for the square
root term requires that ∣∣∣∣

〈ūj〉〈u′
j〉

Q2
+

κ

Q2

∣∣∣∣ <
1

2
,

where Q ≡
(
〈ūi〉〈ūi〉

)1/2
. However, even if this condition is not satisfied, it is

nevertheless possible for the first few terms in the expansion of
(
〈uj〉〈uj〉

)1/2
in

the putative small (order) parameter δ to be useful (viz., provide useful predictions)
even though the expansion parameter is of order unity (which, strictly, will result
in the violation of the condition for absolute convergence of the binomial series).
There are numerous examples of this phenomenon in other fields of endeavor: in
quantum chromodynamics (QCD), the coupling constant for the strong interaction
(force which holds the nucleus together) is large (αstrong ∼ 14) and the power
expansion in the order parameter αstrong (perturbation theory) is not expected to
be reliable, yet the first few terms in perturbative calculations in QCD have been
found surprisingly to give predictions that agree well with experimental results in
deep electron-nucleon scattering reactions (Greiner and Schäfer, 1994); and, the
expansion in small Reynolds number parameter for laminar flow around a cylinder
is known to work well for Reynolds number of order 10 (Van Dyke, 1964).

11 An alternative procedure would have been to use the full infinite series (formal)
expansion for the square root term, and then to assume Gaussian turbulence in the
canopy flow so that Wick’s theorem (Kleinert, 1990) can be applied to the time-
averaged expansion to express all the higher-order velocity moments in terms of
only various products of the second-order velocity moments. This produces an exact
formal (albeit necessarily complicated) result for f̄i for the case of Gaussian turbu-
lence, but is physically deficient since canopy turbulence is known to be strongly
non-Gaussian (Raupach et al., 1986). Furthermore, for strong turbulence where
δ = |〈u′

i〉|
/
Q ∼ O(1), the formal expansion of the square root term may not result in

a convergent series. Yet, the first few terms in this expansion may still nevertheless
lead to useful results (see footnote 10).
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18 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

(viz., 〈u′
i〉〈u′

i〉
/
〈ūi〉〈ūi〉 � 1; or, equivalently, δ � 1). However, it is

known that this ratio of kinetic energies is not small in a plant or urban
canopy (Raupach et al., 1986; Roth, 2000), being of order unity (strong
turbulence). It is legitimate to ask why one has the right to expect the
second-order expansion for fi in Equation (30) to resemble the real drag
force, when the implicit parameter of the expansion is of order unity.
To this issue, we emphasize that by following a rational procedure for
the physical parameterization and subsequent mathematical approxi-
mation of fi (required for time-averaging) and for construction of the
implied corresponding source/sink terms in the supporting transport
equations for the turbulence quantities (see below), we have created
functional forms for these terms that while not being exact, neverthe-
less probably mimic the real behavior (and essential physics) of these
terms to a good approximation. In the end, we only claim here to have
produced a self-consistent basis for the approximations used for the
source/sink terms in the mean momentum and supporting turbulence
transport equations. However, an alternative non-perturbative method
for the evaluation of f̄i that is valid for strong turbulence is summarized
in Appendix B.

Time averaging of fi in Equation (30) gives the following expression
(approximation) for the time-averaged form and viscous drag force
vector exerted on a unit mass of air in the averaging volume:

f̄i = −CDÂ

(
Q〈ūi〉 +

〈ūj〉
Q

〈u′
i〉〈u′

j〉 +
〈ūi〉κ

Q

)
, (31)

which, in combination with Equation (23), yields

f̄i = −CDÂ

[(
Q +

5
3

κ

Q

)
〈ūi〉 − νt

(
∂〈ūi〉
∂xj

+
∂〈ūj〉
∂xi

)
〈ūj〉
Q

]
. (32)

With these closure assumptions, the final form of the modelled
time-averaged, spatially-averaged NS equation [obtained by substitut-
ing Equations (23), (26) and (32) into Equations (20) and (21)] becomes

∂〈ūi〉
∂t

+
∂〈ūj〉〈ūi〉

∂xj
= −∂〈p̄〉

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂〈ūi〉
∂xj

+
∂〈ūj〉
∂xi

)
− 2

3
δijκ

]

−CDÂ

[(
Q +

5
3

κ

Q

)
〈ūi〉

−νt

(
∂〈ūi〉
∂xj

+
∂〈ūj〉
∂xi

)
〈ūj〉
Q

]
. (33)
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5. Derivation of Transport Equations for κ and ε

The budget equations for κ and ε, which have been defined explicitly
in Equations (24) and (25), need to be derived. To this purpose, let us
define f ′

i ≡ fi − f̄i as the fluctuating drag force. From Equations (30)
and (31), we can derive

f ′
i = −CDÂQ

(〈ūi〉〈ūk〉〈u′
k〉

Q2
+ 〈u′

i〉 +
〈u′

i〉〈ūk〉〈u′
k〉

Q2

−〈ūk〉
Q2

〈u′
i〉〈u′

k〉 +
〈ūi〉〈u′

k〉〈u′
k〉

2Q2
− 〈ūi〉κ

Q2

)
. (34)

The transport equation for the spatially-averaged fluctuating veloc-
ity 〈u′

i〉, obtained by subtracting the evolution equation for the time-
averaged spatially-averaged velocity [Equation (20)] from the spatially-
averaged Navier-Stokes equation [Equation (17)], can be written in
symbolic form as follows:

D〈u′
i〉

Dt
= · · · + f ′

i , (35)

where D/Dt is the material derivative based on the spatially-averaged
velocity 〈ui〉. The time average of the linear combination 〈u′

j〉D〈u′
i〉/Dt+

〈u′
i〉D〈u′

j〉/Dt gives the following transport equation for 〈u′
i〉〈u′

j〉:

〈u′
j〉

D〈u′
i〉

Dt
+ 〈u′

i〉
D〈u′

j〉
Dt

=
D̄〈u′

i〉〈u′
j〉

D̄t
= · · · + Fij , (36)

where D̄/D̄t is the material derivative based on the spatially-averaged,
time-mean velocity 〈ui〉. Furthermore, Fij , representing the interac-
tion between the fluctuating drag force and spatially-averaged velocity
fluctuations, has the explicit form

Fij ≡ 〈u′
j〉f ′

i + 〈u′
i〉f ′

j

= −CDÂ

[
2Q〈u′

i〉〈u′
j〉 +

1
Q

(
〈ūi〉〈ūk〉〈u′

j〉〈u′
k〉 + 〈ūj〉〈ūk〉〈u′

i〉〈u′
k〉
)

+
2
Q
〈ūk〉〈u′

i〉〈u′
j〉〈u′

k〉

+
1

2Q

(
〈ūi〉〈u′

j〉〈u′
k〉〈u′

k〉 + 〈ūj〉〈u′
i〉〈u′

k〉〈u′
k〉
) ]

. (37)
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One-half the trace of Fij yields

F ≡ 1
2
Fii = 〈u′

i〉f ′
i

= −CDÂ

[
2Qκ +

1
Q

(
〈ūi〉〈ūk〉〈u′

i〉〈u′
k〉
)

+
3

2Q

(
〈ūk〉〈u′

i〉〈u′
i〉〈u′

k〉
) ]

. (38)

The triple correlation term 〈u′
i〉〈u′

i〉〈u′
k〉 in Equation (38) can be

modelled, following Daly and Harlow (1970), as

〈u′
i〉〈u′

i〉〈u′
k〉 = 2Cs

κ

ε

[
〈u′

k〉〈u′
l〉

∂κ

∂xl
+ 〈u′

i〉〈u′
l〉

∂〈u′
i〉〈u′

k〉
∂xl

]
, (39)

where the closure constant Cs ≈ 0.3 is used in the present study.12 This
is a gradient transport model for the third moments of the spatially-
averaged fluctuating velocity and involves a tensor eddy viscosity. In
Equations (38) and (39), the double correlation 〈u′

i〉〈u′
j〉 was modelled

previously using the constitutive relationship in Equation (23).
The transport equation for the time-averaged, resolved-scale kinetic

energy of turbulence κ is obtained by multiplying Equation (35) by 〈u′
i〉

and time averaging the result. This procedure will give rise to the F
term exhibited in Equation (38). This term represents the interaction
of the flow with the obstacle elements and corresponds explicitly to
the work done by the turbulence against the fluctuating drag force.
The term F can be interpreted as an additional physical mechanism
for the production/dissipation of κ associated with work against form
and viscous drag on the obstacle elements. From this perspective, the
exact transport equation for κ is

∂κ

∂t
+ 〈ūj〉

∂κ

∂xj
= −∂Tj

∂xj
− 〈u′

i〉
∂

∂xj
〈u′′

i u
′′
j 〉 +

(
P + F

)
− ε, (40)

where F ≡ 〈u′
i〉f ′

i ; the flux Tj is

Tj ≡
1
2
〈u′

j〉〈u′
i〉〈u′

i〉 + 〈u′
j〉〈p′〉 − ν

∂κ

∂xj
; (41)

and,

P ≡ −〈u′
i〉〈u′

j〉
∂〈ūi〉
∂xj

(42)

12 Alternatively, one can assume Gaussian turbulence in the canopy flow and
simply set this triple correlation (odd moment) to zero.
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is the production term (which is generally positive, and hence a ‘source’
in the κ equation). In addition to F , the exact transport equation for
κ embodies an extra term represented by the second term on the right-
hand-side of Equation (40). This term is the energy redistribution due
to the interaction of the spatially-averaged velocity fluctuations with
the gradient of the instantaneous dispersive stresses 〈u′′

i u
′′
j 〉.

The modelled transport equation for κ is then obtained as follows.
Firstly, the additional energy redistribution term identified above is
assumed to be negligible, and will be ignored henceforth. Secondly, the
energy flux Tj is modelled with a gradient diffusion hypothesis13

Tj = − νt

σk

∂κ

∂xj
, (43)

where the ‘turbulent Prandtl number’ for κ is assumed to be σk = 1.
Thirdly, the additional physical effect on κ due to viscous and form
drag on the obstacle elements embodied in F ≡ 〈u′

i〉f ′
i will be modelled

using Equations (38) and (39). With these closure approximations, the
model transport equation for κ assumes the form

∂κ

∂t
+

∂〈ūj〉κ
∂xj

=
∂

∂xj

(
νt

σk

∂κ

∂xj

)
+ (P + F ) − ε, (44)

where the explicit form for F is exhibited in Equations (38) and (39).
The exact transport equation for ε can be derived rigorously, but it

is not a useful starting point for a model equation. Consequently, rather
than being based on the exact equation, the model equation for ε here is
essentially a dimensionally consistent analog to the κ-equation. In this
sense, the model equation for ε is best viewed as being entirely empir-
ical. To this purpose, we note that the time scale τ ≡ κ/ε will make
the production and dissipation terms in the κ-equation dimensionally
consistent. Indeed, τ = κ/ε is the only turbulence time scale that one
can construct from the parameters of the problem. Hence, the dimen-
sionally consistent and coordinate invariant analog to Equation (44)
becomes

∂ε

∂t
+

∂〈ūj〉ε
∂xj

=
∂

∂xj

(
νt

σε

∂ε

∂xj

)
+

ε

κ

(
Cε1

(
P + F

)
− Cε2ε

)
, (45)

13 This hypothesis is consistent with the overriding (implicit) assumption that
there is a clear-cut separation of scales between the mean and turbulent flows such
that τ/T � 1 and l/L, where T and L are the characteristic time and length scales
of the mean flow and τ and l are the integral time and length scales of turbulence.
Of course, as discussed earlier in this paper, this constitutes an oversimplification
since in canopy flows, τ/T and l/L can be (and, frequently are) of O(1).
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where σε = 1.3, Cε1 = 1.44 and Cε2 = 1.92 are empirical (closure)
constants. The ε-equation here essentially retains the same form as the
usual model equation for ε commonly utilized in the standard k-ε model
(Launder and Spalding, 1974). The only difference here is that the drag
force effect on the turbulence (embodied in the term F ) has been in-
cluded with the production term P in Equation (45). The ε production
term is modelled as Cε1P/τ [P is determined through Equation (42)
on substitution of Equation (23)] in the relaxation time approximation.
Finally, the destruction of dissipation term has a simple physical inter-
pretation in terms of a relaxation time; namely, Cε2ε

2
/
κ = Cε2ε

/
τ , with

τ in this context identified as the lag in the dissipation ε, correspond-
ing to the time it will take energy injected (produced) at the energy
containing wavenumbers to be reduced to the size of the dissipative
wavenumbers.

In Equation (45), we have grouped F with P in the ε-equation.
In other words, we sensitize the ε-equation to the effects of form and
viscous drag of the obstacle elements by replacing P with P + F in
the ‘production of dissipation’ term (usually, the effect of the obstacle
elements is to enhance the dissipation in the canopy airspace). This
treatment is similar to the rationale used by Ince and Launder (1989)
for dealing with buoyancy effects on turbulence in buoyancy-driven
flows. In these types of flows, the gravitational production term G ≡
−βgiu′

iT
′ (gi is the gravitational acceleration vector, β is the thermal

expansion coefficient, and T ′ is the virtual temperature fluctuation) is
included with P in the transport equation for the viscous dissipation
rate. In this regard, our proposed approach for treating F in the ε-
equation differs from that suggested by Getachew et al. (2000).14

6. Whither Wake Production

The closure of the spatially-averaged RANS equation [cf. Equations (12)
and (13)] requires a transport equation for 〈k〉 ≡ 1

2〈u′
iu

′
i〉 (i.e., the

spatially-averaged turbulence kinetic energy), whereas that for the time-
averaged spatially-averaged NS equation [cf. Equations (20) and (21)]
requires a transport equation for κ ≡ 1

2〈u
′
i〉〈u′

i〉 (i.e., the time-averaged
resolved-scale kinetic energy of turbulence). The model transport equa-
tion for κ in Equation (44) included a source/sink term F whose form

14 In general, the dissipation rate model (or, equivalently, other forms of the scale-
determining equation) is the weakest link in turbulence modelling of complex flows,
whether it be for two-equation turbulence models or for Reynolds stress transport
models. Although more sophisticated dissipation models have been developed, they
seem to lack the general applicability of the simple model used here.
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can be systematically derived in terms of the drag force term that
appears in the mean momentum equation [cf. Equations (38) and (39)].

The budget equation for 〈k〉 can be derived by applying the spatial
averaging operator to the standard transport equation for k to give

∂〈k〉
∂t

+ 〈ūj〉
∂〈k〉
∂xj

= −〈u′
iu

′
j〉

∂ūi

∂xj

− ∂

∂xj




1
2
〈u′

ju
′
iu

′
i 〉 + 〈u′

jp
′ 〉 +

1
2
〈 ū′′

j u
′
iu

′
i 〉

︸ ︷︷ ︸
I




+ν
∂2〈k〉
∂x2

j

− ε −
〈

u′
iu

′
j

′′ ∂ū′′
i

∂xj

〉

︸ ︷︷ ︸
II

. (46)

In Equation (46), ε ≡ ν
〈∂u′

i
∂xj

∂u′
i

∂xj

〉
is the isotropic turbulent dissipation

rate for 〈k〉.
The transport equation for 〈k〉 contains two additional terms (des-

ignated I and II) that need to be approximated. Term I corresponds
to the dispersive transport of 〈k〉 [analogous to the dispersive flux of
momentum in Equations (12) and (13)]. Term II can be identified as a
wake production term (see Raupach and Shaw, 1982) which accounts
for the conversion of mean kinetic energy to turbulent energy in the
obstacle wakes by working of the mean flow against the drag. This term
is analogous to the F term that appears in the transport equation for
κ, but unlike F whose form can be systematically derived from the
form and viscous drag force term that appears in the mean momentum
equation, the link (if any) between the wake production term in Equa-
tion (46) and the drag force term in the mean momentum equation
is less obvious. For example, Raupach and Shaw (1982) showed that
provided (1) the dispersive stress 〈ū′′

i ū
′′
j 〉 and the dispersive transport of

〈k〉 are both negligible and (2) the mean kinetic energy is not directly
dissipated to heat in the canopy, the wake production term can be
approximated as follows:

−
〈
(u′

iu
′
j)

′′ ∂ū′′
i

∂xj

〉
= −〈ūi〉f̄i = 2CDÂQ

(
1
2
〈ūi〉〈ūi〉

)

︸ ︷︷ ︸
K

, (47)

where K represents the mean kinetic energy (kinetic energy of the
spatially-averaged time-mean flow). Note that use of Equation (47) as
a model for the wake production term strictly provides a source term
in the transport equation for 〈k〉 and, physically, corresponds to the
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conversion of mean kinetic energy (MKE) to turbulence kinetic energy
(TKE) [MKE → TKE which here is equated simply to the work done
by the flow against form drag −〈ūi〉f̄i].

Generally, the inclusion of the wake production term of Equation (47)
in the transport equation for 〈k〉 has been found to result in an overesti-
mation of the turbulence level within a vegetative canopy. For example,
Wilson and Shaw (1977) included a wake production term in their
streamwise normal stress equation and found that their model over-
estimated the streamwise and vertical turbulence intensities in a corn
canopy despite the fact that they tuned their mixing length. Further-
more, Wilson (1985) found that a zone of reduced TKE (“quiet zone”)
in the near lee of a shelter belt cannot be reproduced correctly with
the inclusion of a wake production term in the normal stress transport
equations15 but, rather, required the exclusion of this source term cou-
pled with the inclusion of a sink term corresponding approximately to
Equation (31). Likewise, Green (1992) and Liu et al. (1996) found that
it was necessary to include also a sink term in the budget equation for
〈k〉 and, to this purpose, modelled the “wake” production term in the
budget equation for 〈k〉 in an ad hoc manner as

−
〈
(u′

iu
′
j)

′′∂ū′′
i

∂xj

〉
= βP CDÂQ

(
1
2
〈ūi〉〈ūi〉

)

︸ ︷︷ ︸
K

−βdCDÂQ

(
1
2
〈u′

iu
′
i〉
)

︸ ︷︷ ︸
〈k〉

, (48)

which includes a gain to 〈k〉 from conversion of the mean kinetic en-
ergy K to turbulence energy at the larger scales (source term) and
a loss from 〈k〉 of the large-scale turbulence energy to smaller (wake)
scales (sink term). In Equation (48), βP and βd are O(1) empirical
dimensionless constants with no particular physical significance. More
specifically, Green (1992) argued heuristically that the sink term in
Equation (48) was required to account for the accelerated cascade of 〈k〉
from large to small scales due to the presence of the roughness elements
(arising from the rapid dissipation of fine-scale wake eddies in a plant
canopy). Liu et al. (1996) in their 〈k〉 equation used βP = 2 and βd = 4,
generally giving a model where the overall effect of the “source” term
in Equation (48) is to act as a sink term within the canopy. Indeed, Liu
et al. (1996) noted that the ad hoc inclusion of the sink term (second
term on the right-hand side) of Equation (48) [which was inserted in
hindsight] was important, for otherwise they found that their predicted

15 The inclusion of a wake production (source) term generally led to an increase
of the TKE level in the near lee of a porous barrier, contrary to the available
experimental observations.
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〈k〉 was “about 100% larger than the experimental measurements when
the second term was ignored”.

Sanz (2003) described an alternative method for the determination
of the source model coefficients βP and βd in Equation (48). Sanz recog-
nized the confusion that had reigned for some time as to the ‘correct’
source terms in TKE and dissipation-rate equations for canopy flow.
His solution was to constrain particular pre-existing (and heuristic)
expressions for the forms of the sinks Sk and Sε in the model equations
for TKE (“k”) and its dissipation rate ε, though without identifying k
specifically with 〈k〉 or with κ (i.e., a precise interpretation of k was
not provided). The constraints emerged by requiring that the k-ε model
(with these sources) should reproduce an exponential mean wind profile
in the canopy layer, in the special case of a horizontally-uniform, neutral
plant canopy flow in which both leaf area density and the effective tur-
bulence lengthscale k3/2

/
ε were (by requirement) height independent.

Evidently, this approach does not offer the generality provided here.
In contrast, the additional source/sink term F that appears in the

budget equation for κ can be systematically derived from rate of work-
ing of the turbulent velocity fluctuations against the fluctuating drag
force, and appears naturally in the derivation of the budget equation
for κ. The form of the source/sink term F results from a series ex-
pansion for fi that is truncated systematically at second order in the
velocity fluctuations 〈u′

i〉. All constants in this model for F are derived
explicitly from the expansion procedure; no adjustable constants arise
and no additional ad hoc modifications are applied to F , in contrast to
the mentioned treatments of the transport equation for 〈k〉 [cf. Equa-
tion (48)]. Even though the ‘turbulence kinetic energy’ κ ≡ 1

2〈u
′
i〉〈u′

i〉
(time-averaged, resolved-scale kinetic energy of turbulence) used in
our turbulence closure model is different from the usual form of the
spatially-averaged turbulence kinetic energy 〈k〉 ≡ 1

2〈u′
iu

′
i 〉, they are

nevertheless related as follows:

〈k〉 − κ =
1
2
(
〈u′′

i u
′′
i 〉 − 〈ū′′

i ū
′′
i 〉
)

=
1
2
〈 (u′

i)′′(u
′
i)′′ 〉. (49)

Note that the difference between 〈k〉 and κ is proportional to the
difference between the two forms of dispersive stress that appear in the
spatially-averaged RANS equation and the time-averaged, spatially-
averaged NS equation. However, note that this difference can be ex-
pressed as the spatial average of time averages of the departures of
velocity fluctuations from their spatial (volume) average. Since this
term involves a “perturbation of a perturbation”, it seems reasonable
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to assume16 that

0 ≈ 1
2
∣∣ 〈(u′

i)′′(u
′
i)′′
〉 ∣∣� max

(
〈k〉, κ

)
. (50)

With this assumption, 〈k〉 and κ are expected to be almost equal in
value (viz., 〈k〉 ≈ κ). This, together with Equation (22), implies that

〈ū′′
i ū

′′
j 〉 ≈ 〈u′′

i u
′′
j 〉, (51)

or, in other words, the dispersive stresses are expected to be approx-
imately equal to the spatial average of the high-frequency turbulent
stresses. Finally, with reference to Equation (22), this also implies that
〈u′

i〉〈u′
j〉 ≈ 〈u′

iu
′
j 〉. The latter approximation will be used in III to

compare model predictions of 〈u′
i〉〈u′

j〉 with the diagnosed values of
〈u′

iu
′
j 〉 obtained from a high-resolution RANS simulation.

Interestingly, the ‘zeroth-order’ term in our expansion of F in Equa-
tion (38), rewritten below

F ≡ 〈u′
i〉f ′

i = −2CDÂQ

(
1
2
〈u′

i〉〈u′
i〉
)

︸ ︷︷ ︸
κ

+H.O.T, (52)

where H.O.T denotes higher-order correction terms, is analogous to the
sink term contribution for the wake production term in the Liu et al.
(1996) model of Equation (48) [except the factor here is 2, rather than
βd = 4]. Note that the higher-order correction terms for F can have
either sign implying that they are source/sink terms. More importantly,
it needs to be emphasized that the leading-order term of F is a sink
term, and not a source term implying that in the transport equation
for κ the conversion of MKE to TKE is ipso facto absent.17 In this
sense, the transport equation derived here for κ is reminiscent of the
transport equation for shear kinetic energy (SKE) originally proposed
by Wilson (1988). Wilson formulated a heuristic approach in which

16 No experimental observations are available to support or refute this assumption.
It is conceivable that large-eddy simulations (LES) of plant or urban canopy flows
may provide “data” that can be used to evaluate the validity of this assumption.

17 Although Wang and Takle (1995b) use the transport equation for κ for their
simulations of flows near shelter belts, they seem to have incorporated wrongly a

source term SMKE ≡ CDÂ
(
〈ūi〉〈ūi〉

)3/2
in the κ-equation representing MKE con-

version to κ by drag of the shelter belt on the flow. Equation (52) shows that the
inclusion of the MKE conversion term in the κ-equation is not self-consistent with
the momentum sink terms introduced into the transport equations for the time-
averaged spatially-averaged mean wind. Furthermore, Wilson and Mooney (1997)
reported that using the source term SMKE in the κ transport equation resulted in a
drastic overestimation of peak TKE levels near the porous barrier.
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he partitioned the turbulence energy into two spectral bands; namely,
bands of turbulent motion corresponding to the large-scale or shear
kinetic energy and to small-scale or wake kinetic energy (WKE). In this
approach, the MKE conversion due to the drag forces was assumed to
be re-deposited as fine-scale WKE [viz., in small eddies on the scale of
the canopy elements (twigs, leaves, etc.) in the fine-scaled plant canopy]
where it was rapidly dissipated as heat. The conversion of SKE to WKE
was modelled here simply as the sum of two terms, the first representing
the conventional dissipation due to the vortex-stretching mechanism
and the second arising from the rate of working of turbulence against
the vegetation drag resulting in an additional sink term in the SKE
transport equation of the form

εfd = 2CDÂ〈ū〉
(
〈u′2〉 +

1
2
〈v′2〉 +

1
2
〈w′2〉

)
. (53)

Note that the sink term εfd appearing in the SKE transport equation
is very similar to the leading order term of F (sink term) appearing in
the κ transport equation [cf. Equation (52) with Equation (53)], the
mathematical difference being solely due to Wilson’s approximation
that u

√
u2 + v2 + w2 ≈ u2 (etc.). However the mathematical similarity

should not cause one to lose sight of the important logical difference, for
Wilson’s instantaneous velocity (u, v, w) lacked the proper designation
as a spatial average.

Despite the outward similarities between the current treatment of
κ and Wilson’s treatment of SKE, it is legitimate to ask whether κ is
exactly coincident with SKE defined by Wilson. The implicit assump-
tion in Wilson’s (1988) two-band “spectral division” for the turbulence
energy resides in the presumption that there is a clear cut separation
between the large (SKE) and small (WKE) scale components of the
turbulence and that MKE and large-scale TKE lost due to the action
of form drag must necessarily be re-deposited as fine-scale, rapidly
dissipated eddies in the WKE component. In this two-band spectral
decomposition approach, the characteristic length scale separating the
large- and small-scale components of turbulence is a physical scale
imposed by the elements of the fine-scaled plant canopy itself (viz.,
direct interaction of the flow with the foliage imposes a new, smaller
length scale on the flow corresponding to the leaf or twig scale, and it is
this range of scales which is associated with the fine-scale WKE). While
the decomposition of the turbulence into a large-scale SKE and fine-
scale WKE is reasonable for a fine-grained (and dense) plant canopy,
it appears to be less appropriate for a coarse-grained urban canopy
where the wake scales of motion behind buildings (element wakes) are
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not small, but rather frequently comparable to the scales associated
with the shear production of turbulence energy.

We note that κ ≡ 1
2〈u

′
i〉〈u′

i〉 (time-mean locally-spatially-filtered tur-
bulence kinetic energy) represents a restricted spectrum of turbulent
motions and, in this sense, is similar to SKE defined by Wilson (1988).
However, the basic difference in κ and SKE arises from the fact that the
implicit scale separating “large” and “small” scales of turbulent motion
in κ is obtained from the application of an explicit spatial filtering
(volume-averaging) on the turbulent velocity fluctuations u′

i itself [in
contrast to SKE where the separation between large and small scales
of motion devolves from a physical length scale imposed on the flow
by the canopy elements (e.g., fine-grained foliage in a plant canopy)].
Furthermore, the scale separating large and small turbulent motions in
the two-band spectral representation of Wilson (1988) is not explicitly
specified, other than stating it is to guarantee that the SKE excludes the
TKE residing in the fine wake scales. In contrast, the scale separating
large and small turbulent motions in the definition of κ is explicitly
specified by the filter width ∆ that defines the spatial filter applied to
the turbulent velocity fluctuations [cf. Equations (1) and (4)].

To explore this concept further, it is informative to write κ in terms
of the following spectral representation:

κ ≡ 1
2
〈u′

i〉〈u′
i〉 =

1
2

∫ ∞

−∞

∣∣Ĝ(k)
∣∣2Φ(k)dk, (54)

where k is the wavenumber vector and Φ(k) is the turbulence energy
spectral density defined over the entire spectrum of turbulent motions.
In Equation (54), Ĝ(k) is the Fourier transform of the top-hat filter
exhibited in Equation (4) given by

Ĝ(k) =
3∏

i=1

sin
(
∆(i)k(i)

/
2
)

∆(i)k(i)

/
2

, (55)

where ki is the i-th component of the wavenumber vector k, ∆i is the
filter width in the xi-direction (with total filter width ∆ specified by
∆ = V 1/3 =

(
∆1∆2∆3

)1/3), and the round parentheses around an
index i [viz., (i)] indicates that there is no summation over i for this
repeated index. Equation (54) shows explicitly that κ only incorporates
the turbulence energy in a low wavenumber band with wavenumber
contributions confined largely to the range |k| . π/∆ determined
by the transfer function

∣∣Ĝ(k)
∣∣2 of the spatial filter defined in Equa-

tion (4). This spatial filter effectively removes (attenuates) small-scale
flow features that are less than an externally introduced (imposed)
length scale ∆ (filter width). However, we emphasize that this spatial
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filtering operation on the velocity field does not introduce a clear-cut
separation between resolved and sub-filter scales because (1) the top-
hat filter allows a frequency overlap between the resolved and sub-filter
scales and (2) the turbulence energy spectrum is continuous so that
the smallest resolved scales of motion are close to those of the largest
sub-filter scales of motion.

The time-average of the spatially-averaged NS equations leads logi-
cally to the consideration of the transport equation for κ, rather than
〈k〉. This averaging scheme results naturally in a two-band spectral
representation for the TKE that is similar to that proposed by Wilson
(1988). However, while the dual-band model of Wilson partitions the
turbulence energy into a large-scale SKE and fine-scale WKE with the
length scale separating these two bands determined by the scale of the
individual canopy elements (e.g., leaf and twig scale in a plant canopy),
the dual-band model here is perhaps interpreted best as partitioning
the turbulence energy into a resolved scale and sub-filter scale band
with the separation between these two scales externally imposed by
the filter width ∆ of the spatial filter applied in the averaging oper-
ation. In this interpretation, κ should be identified with the resolved
turbulence kinetic energy (TKE [> ]) that is due to energetic motions
in the flow at scales greater than the externally determined length
scale ∆ (filter width). A key aspect of the modelled transport equation
for κ ≡ TKE [ > ] [cf. Equation (44)] is the exchange or conversion of
kinetic energy between TKE [> ] and the kinetic energy of turbulent
motions at scales less than ∆ (TKE [< ]). The leading-order term in
F is negative, implying a “forward scatter” of TKE [> ] into TKE [< ],
a physical mechanism which reduces the level of TKE [> ]. More sig-
nificantly, the leading-order term of F does not involve a source term
related to the conversion of MKE to TKE [> ]. However, higher-order
terms of F may possibly embody an increase of the level of TKE [> ]

due to interactions between the time-mean spatially-averaged mean
flow and the resolved-scale turbulence.18

Applying a spatial filter to the equations of motion results in a reduc-
tion in the complexity and information content of the flow, but intro-
duces a length scale into the description of the fluid dynamics, namely
the width ∆ of the filter used. Assuming that the filter width applied
is within the inertial range of scales of fluid motion, the application of
the spatial filter will cause the turbulence kinetic energy wavenumber

18 The sign of many of the higher-order terms in F is indefinite, so some of
these interactions between the mean flow and the resolved-scale turbulence (viz.,
turbulent motions with length scales larger than the filter width ∆, or equivalently
with wavenumbers |k| . π

/
∆) may be sink terms that contribute to the reduction

of TKE [ > ].
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spectrum in three dimensions of the filtered turbulent motions to roll-
off rapidly below the length scale ∆ as |k|−2−5/3 [cf. Equations (54)
and (55)], instead of continuing at the slower Kolmogorov scaling law,
|k|−5/3. This roll off shortens the inertial range for the spatially-filtered
velocity field, resulting in a reduction in the energy associated with the
higher wavenumbers in the filtered velocity and an increased dissipation
in the range of scales |k|∆ � π, implying an increased drain of the
energy of the resolved (large) scales by those of the sub-filter (small)
scales. The effects of the small-scale fluid motions on the resolved ener-
getics of turbulence in the canopy flow (embodied in κ) must physically
be described by an increased (effective) “viscous” dissipation εeff of
the resolved scales of motion that now becomes effective at |k|∆ ≈ π
(rather than at the larger wavenumber associated with the Kolmogorov
microscale), with εeff consisting of two basic contributions: namely,
the conventional free-air dissipation associated with the spectral eddy
cascade and an additional dissipation (≈ 2CDÂQκ) devolving from
air/obstacle interactions that result in additional source/sink terms
in the κ-equation after a spatial filtering operation has been explic-
itly applied to the instantaneous velocity fluctuations. The effect of
this additional dissipation is embodied in the leading-order term of F
[cf. Equation (52)].

7. Conclusions

In this paper, we showed how a modified k-ε model for the prediction of
the time-mean spatially averaged wind and turbulence fields in a canopy
can be derived ‘sytematically’ (or, at least in a self-consistent manner)
by time-averaging the spatially-averaged NS equation. This procedure
ensures the mathematical and logical consistency of parameterization
of source/sink terms in the mean momentum equations and in the
supporting transport equations for κ and ε. Given a parameterization
for the momentum source/sink fi in the spatially-averaged NS equation
that represents the effects of the form and viscous drag in the urban
canopy on the flow, a series expansion is applied to this term with a
truncation at the second order in the velocity fluctuations 〈u′

i〉. Trun-
cation at this order produces a quadratically nonlinear model for the
time-averaged momentum sink f̄i, and also permits the corresponding
source/sink term in the transport equation for κ to be methodically
obtained.

The current approach of time-averaging the spatially-averaged NS
equations is logically (and self-consistently) linked with the transport
equation for κ (time-averaged, resolved-scale kinetic energy of turbu-
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lence), rather than that for 〈k〉 (spatially-averaged turbulence kinetic
energy). Interestingly, κ very explicitly and naturally does not include
TKE at scales smaller than the filter width ∆ = V 1/3. In this sense,
κ here is similar to SKE considered by Wilson (1988). The basic dif-
ference in κ and SKE arises from the fact that the small length scale
imposed on the flow by the individual canopy elements (e.g., individual
leaves) is the characteristic scale that is used (implicitly) in Wilson’s
approach to distinguish the large scales associated with SKE with the
small scales associated with WKE, whereas in the present approach
an externally imposed filter width ∆ is used to distinguish between the
resolved scales associated with κ and the kinetic energy associated with
the sub-filter (unresolved) scales. The current approach seems more
applicable to coarse-scaled cuboid arrays where the wake scales of the
individual canopy elements are not necessarily small in comparison to
the scales associated with the shear production. With this distinction,
the present approach can be interpreted as providing a formal basis for
Wilson’s dual-band spectral decomposition of the TKE [viz., we have
provided a precise mathematical formulation of the heuristic ideas for
“spectral division” of the TKE sketched earlier by Wilson (1988) for
parameterizing turbulence in RANS models which treat the interaction
of the wind with obstacles using a distributed momentum sink in the
mean momentum equations].

Appendix A: Dispersive Stress Tensor Model

While there currently exists no reference data to guide the modelling
of the ‘conventional’ dispersive stress tensor 〈ūi

′′ūj
′′〉, it is nevertheless

possible to construct a structural model for this quantity as follows. To
begin, consider the Reynolds equation for mean momentum conserva-
tion in a neutrally buoyant flow that obtains at any point in the canopy
airspace:

∂ūi

∂t
+

∂
(
ūjūi

)

∂xj
+

∂p̄

∂xi
+

∂u′
iu

′
j

∂xj
− ν

∂2ūi

∂x2
j

= 0. (56)

After applying the volume-averaging operator of Equation (5) to Equa-
tion (56), the dispersive stress 〈ūi

′′ūj
′′〉 arises from the noncommu-

tation of the product operator and the volume-averaging operator in
the nonlinear convective term. In view of this, to construct a struc-
tural model for the dispersive stress we consider a simplification of
the nonlinear convective term of Equation (56) that is obtained by
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volume-averaging (smoothing) the advection velocity; viz., replacing
the nonlinear convective term in Equation (56) by 〈ūj〉∂ūi

/
∂xj to give

∂ūi

∂t
+

∂
(
〈ūj〉ūi

)

∂xj
+

∂p̄

∂xi
+

∂u′
iu

′
j

∂xj
− ν

∂2ūi

∂x2
j

= 0. (57)

In Equation (57), the time-mean velocity ūi is advected by a smoothed
velocity 〈ūj〉 obtained by volume averaging. Replacing the advection
velocity ūj by 〈ūj〉 simplifies the problem by reducing the nonlinear
effects of the convective term.

The spatially filtered time-mean fluid velocity 〈ūi〉 is related to the
time-mean fluid velocity ūi as 〈ūi〉 = G ? ūi, where G is an operator
whose Green’s function is the filter defined by Equations (1) and (4).
The “inverse” is denoted by ūi = G−1 ? 〈ūi〉, assuming that a formal
inverse G−1 of G exists. Using this terminology, Equation (57) [simpli-
fied RANS equation with the degree of nonlinearity of the convective
term reduced] can be written more informatively as follows:

∂
(
G−1 ? 〈ūi〉

)

∂t
+

∂
(
〈ūj〉ūi

)

∂xj
+

∂
(
G−1 ? 〈p̄〉

)

∂xi

+
∂
(
G−1 ? 〈u′

iu
′
j〉
)

∂xj
− ν

∂2
(
G−1 ? 〈ūi〉

)

∂x2
j

= 0. (58)

Applying the spatially-averaging operator G? to Equation (58) gives
explicitly

∂〈ūi〉
∂t

+
∂
(
〈ūj〉〈ūi〉

)

∂xj
+

∂〈p̄〉
∂xi

+
∂〈u′

iu
′
j〉

∂xj
− ν

∂2〈ūi〉
∂x2

j

=

−
{[

G?,
∂

∂t

]
ūi +

∂

∂xj

(
〈ūi〈ūj〉〉 − 〈ūi〉〈ūj〉

)

+

[
G?,

∂

∂xj

]
P
(
ūi, 〈ūj〉

)
+
[
G?,

∂

∂xi

]
p̄

+

[
G?,

∂

∂xj

]
(
u′

iu
′
j

)
−
[
G?,

∂

∂xj

](
ν

∂ūi

∂xj

)}
, (59)

where P (f, g) ≡ fg is the product operator.
Now, in view of the spatial averaging theorem of Equation (2) used

with G specified by Equation (4), most of the terms on the right-
hand side of Equation (59) vanish on application of the no-slip and
impermeability conditions on the velocity field at the surfaces of the
obstacles inside the averaging volume V . The non-vanishing terms
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involving the commutator brackets on the right-hand side of Equa-
tion (59) are −

[
G?, ∂

/
∂xi

]
p̄ and

[
G?, ∂

/
∂xj

](
ν∂ūi

/
∂xj

)
which in view

of Equation (14) can be identified physically with, respectively, f̄Fi

and f̄V i (namely, the form and viscous drag force vectors exerted on a
unit mass of air in the averaging volume). Noting that f̄i = f̄Fi + f̄V i,
Equation (59) simplifies to the following form

∂〈ūi〉
∂t

+
∂
(
〈ūj〉〈ūi〉

)

∂xj
+

∂〈p̄〉
∂xi

+
∂〈u′

iu
′
j〉

∂xj
− ν

∂2〈ūi〉
∂x2

j

=

− ∂

∂xj

(
〈ūi〈ūj〉〉 − 〈ūi〉〈ūj〉

)
+ f̄i, (60)

which on comparison with Equations (12) and (13) implies the following
structural model for the dispersive stress tensor expressed in terms of
the spatially-averaged time-mean velocity 〈ūi〉:

〈ū′′
i ū

′′
j 〉 = 〈ūi〈ūj〉〉 − 〈ūi〉〈ūj〉

=
〈(

G−1 ? 〈ūi〉
)
〈ūj〉

〉
−〈ūi〉〈ūj〉. (61)

Note that the model for 〈ū′′
i ū

′′
j 〉 in Equation (61) is derived directly from

a regularized form of the RANS equation, and as such, is consistent
with various transformation symmetries (e.g., Galilean invariance, time
invariance, etc.) of this equation. Furthermore, the model for 〈ū′′

i ū
′′
j 〉

does not involve any model (closure) coefficients and suggests that
the implied dispersive stress model must necessarily involve an explicit
filtering and an inversion operation. Finally, in light of Equations (49),
(50), and (51), the structural model for 〈ū′′

i ū
′′
j 〉 can also be used as a

model for 〈u′′
i u

′′
j 〉.

To implement the model for 〈ū′′
i ū

′′
j 〉, we are required to construct an

approximation for the inverse operator G−1 (which in view of Equa-
tion (4) is the inverse operator for the volume-averaging operation).
To proceed with this construction, consider the top-hat filter of Equa-
tion (4) applied in a single direction (say, the x-direction) only. Now
perform a Taylor series expansion of a flow quantity φ(y) about the
fixed point x to give

φ(y) =
∞∑

n=0

1
n!
(
y − x

)n ∂nφ(x)
∂xn

(62)

and insert this expansion into the one-dimensional version of Equa-
tion (1) to give

〈φ〉(x) =
∞∑

n=0

α(n)

n!
∂nφ(x)

∂xn
(63)
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where α(n) denotes the n-th order moment of the convolution kernel G:

α(n) ≡ (−1)n
∫ ∞

−∞
snG(s) ds. (64)

For a symmetric filter considered here, all odd moments vanish (viz.,
α(n) = 0 for n odd). Equation (63) shows that we can approximate the
spatial filtering operation by truncating the Taylor series expansion to
(N +1) terms to give a filtering operation that is defined by a low-order
differential filter:

〈φ〉(x) ≈
N∑

n=0

α(n)

n!
∂nφ(x)

∂xn
. (65)

The unfiltered flow quantity φ can be expressed formally as

φ(x) ≈
(

N∑

n=0

α(n)

n!
∂n

∂xn

)−1

〈φ(x)〉. (66)

A simple explicit approximation of the inverse operator for N = 2
(valid to second order in the filter width ∆x) can be written as [using a
formal Taylor series expansion for the inverse operator of Equation (66)
valid to second order]

φ(x) ≈
(

1 − ∆2
x

24
∂2

∂x2

)
〈φ(x)〉, (67)

where 1 is the identity operator. In Equation (67), we have used the
fact that α(2) = ∆2

x

/
12 for a one-dimensional top-hat filter with filter

width ∆x. The inversion operator in three-dimensions can be obtained
from composing three one-dimensional filters to give approximately

φ(x) ≈
(

1 − ∆2
x

24
∂2

∂x2
−

∆2
y

24
∂2

∂y2
− ∆2

z

24
∂2

∂z2

)
〈φ(x)〉

≡ H∆
(
〈φ(x)〉

)
, (68)

where H∆ denotes the Helmholtz operator with ∆ ≡
(
∆x∆y∆z

)1/3

being the effective filter width in three dimensions.

Appendix B: Non-perturbative Evaluation of Source Terms

The calculation of f̄i and F described in Sections 4 and 5 was based
on expanding the spatially filtered total instantaneous velocity ampli-
tude

(
〈uj〉〈uj〉

)1/2 using the binomial series and time averaging the
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various terms in this expansion. However, the convergence of this se-
ries required that the time-averaged resolved scale kinetic energy of
turbulence be sufficiently small compared to the magnitude of the
spatially-averaged time-mean wind speed such that the condition for
absolute convergence of the binomial series (see footnote 10) is satisfied.
It is conceivable that this condition for absolute convergence of the
binomial series is violated in a canopy flow for cases of strong turbu-
lence where 〈u′

j〉〈u′
j〉 & 〈ūj〉〈ūj〉. This appendix offers an alternative

method (based on a non-perturbative approach) for the calculation
of f̄i and F that is valid for the case of strong turbulence (and, also
for weak turbulence of course). The actual calculation method for the
non-perturbative evaluation of f̄i and F is quite complex, but the
methodology is generally applicable and does not require the existence
of a small expansion parameter δ ≡

∣∣〈u′
i〉
∣∣/Q [cf. Equation (30)].

To begin, recall that

f̄i ≡ −CDÂ
(
〈uj〉〈uj〉

)1/2〈ui〉

= −CDÂ
(
〈uj〉〈uj〉

)1/2(〈ūi〉 + 〈u′
i〉
)

(69)

and

F ≡ 〈u′
i〉f ′

i

= −CDÂ

(
〈ūi〉

(
〈uj〉〈uj〉

)1/2〈u′
i〉 +

(
〈uj〉〈uj〉

)1/2〈u′
i〉〈u′

i〉
)

. (70)

The computation of f̄i and F requires the consideration of three en-
semble (or probability) averages; namely,

(
〈uj〉〈uj〉

)1/2 =
∫∫∫ ∞

−∞

(
〈uj〉〈uj〉

)1/2Ψ
(
〈u′〉

)
d〈u′〉; (71)

(
〈uj〉〈uj〉

)1/2〈u′
i〉 =

∫∫∫ ∞

−∞

(
〈uj〉〈uj〉

)1/2〈u′
i〉Ψ

(
〈u′〉

)
d〈u′〉; (72)

and
(
〈uj〉〈uj〉

)1/2〈u′
i〉〈u′

i〉 =
∫∫∫ ∞

−∞

(
〈uj〉〈uj〉

)1/2

×〈u′
i〉〈u′

i〉Ψ
(
〈u′〉

)
d〈u′〉. (73)

Here, Ψ
(
〈u′〉

)
is the joint probability density function (PDF) of the

spatially-averaged velocity fluctuations vector 〈u′〉 ≡ 〈u′
i〉. Note that

in writing Equations (71) to (73), for simplicity of notation we have
used 〈u′〉 to denote values in the sample space of the random vector
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corresponding to the spatially filtered velocity fluctuations; whereas,
in Equations (69) and (70) 〈u′〉 ≡ 〈u′

i〉 has been used to denote the
random vector itself. The precise useage of 〈u′〉 in the material that
follows should be clear from the context.

To evaluate the integrals in Equations (71), (72), and (73), first
note that the spatial average of the total instantaneous velocity can
be decomposed as 〈ui〉 = 〈ūi〉 + 〈u′

i〉. Next, it is convenient to express
the spatially-averaged time-mean velocity vector 〈ū〉 ≡ 〈ūi〉 and the
spatially-averaged velocity fluctuation vector 〈u′〉 ≡ 〈u′

i〉 in spherical
coordinates. To this end, let the spherical coordinates of 〈ū〉 and 〈u′〉
be

(∣∣〈ū〉
∣∣, θ̄, φ̄

)
and

(∣∣〈u′〉
∣∣, θ′, φ′), respectively. Here, | · | denotes the

magnitude (or, Euclidean length) of the vector and θ and φ are the
co-latitudinal (or, zenith) and azimuthal angles, respectively. Hence,
the Cartesian components of 〈u′〉 can be expressed in terms of its
spherical coordinates

(∣∣〈u′〉
∣∣, θ′, φ′) as 〈u′

1〉 =
∣∣〈u′〉

∣∣ sin θ′ cos φ′, 〈u′
2〉 =∣∣〈u′〉

∣∣ sin θ′ sinφ′, and 〈u′
3〉 =

∣∣〈u′〉
∣∣ cos θ′ [with similar relationships for

〈ūi〉, i = 1, 2, 3 in terms of its spherical coordinates
(∣∣〈ū〉

∣∣, θ̄, φ̄
)
]. Let

the velocity vectors 〈ū〉 and 〈u′〉 have an angle γ between them. By
trigonometry, the angle γ is related to the angles θ̄, φ̄ and θ′, φ′ as
cos γ = cos θ̄ cos θ′ + sin θ̄ sin θ′ cos

(
φ̄ − φ′). For simplicity, let us write

Q ≡
∣∣〈ū〉

∣∣ =
(
〈ūj〉〈ūj〉

)1/2 and q ≡
∣∣〈u′〉

∣∣ =
(
〈u′

j〉〈u′
j〉
)1/2. A result

useful for the evaluation of the integrals displayed above is to apply
the addition theorem for spherical harmonics (Matthews and Walker,
1970) to write the reciprocal of the magnitude of the spatially filtered
total instantaneous velocity vector

∣∣〈u〉
∣∣ =

∣∣〈ū〉 + 〈u′〉
∣∣ as [recalling

that (Q, θ̄, φ̄) and (q, θ′, φ′) are the spherical coordinates of 〈ū〉 and
〈u′〉, respectively]

1∣∣∣〈ū〉 + 〈u′〉
∣∣∣

= 4π
∞∑

l=0

l∑

m=−l

(−1)m

(2l + 1)
ql
<

ql+1
>

Y ∗
lm(θ′, φ′)Ylm(θ̄, φ̄), (74)

where Ylm(θ, φ) denotes the spherical harmonics (orthonormal func-
tions defined over the unit sphere),19 ∗ denotes the complex conjugation
operation, and (q<, q>) = (q,Q) or (Q, q) depending on which of q

19 A brief derivation of Equation (74) follows. For definiteness, we assume that∣∣〈u′〉
∣∣ ≡ q <

∣∣〈ū〉
∣∣ ≡ Q. Then, introducing s = q/Q we have

1∣∣〈ū〉 + 〈u′〉
∣∣ =

1(
Q2 + q2 + 2Qq cos γ

)1/2
=

1

Q

(
1 + s2 + 2s cos γ

)−1/2
.

Observe cos γ = − cos(π − γ) where π − γ is the angle between the vectors 〈ū〉 and
−〈u′〉. Noting that the vector −〈u′〉 has the spherical coordinates (q, π− θ′, π +φ′),
recognizing that the equation above is the generating function for the Legendre
polynomials, and using the addition theorem for spherical harmonics (Matthews
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and Q is larger (viz., q< denotes the smaller of q and Q, whereas
q> denotes the larger of q and Q). Equation (74) gives

∣∣〈ū〉 + 〈u′〉
∣∣−1

in a completely factorized form in the ‘coordinates’ 〈ū〉 = (Q, θ̄, φ̄)
and 〈u′〉 = (q, θ′, φ′). This is convenient for any integration over the
probability density function of 〈u′〉 where one variable is the variable
of integration (i.e., 〈u′〉) and the other is the ‘coordinate’ of a fixed
point (i.e., 〈ū〉).20 The price paid is that there is a double summation
involved, rather than a single term.

Now, to evaluate the integrals of Equations (71), (72), and (73), we
rewrite21

∣∣〈u〉
∣∣ ≡

(
〈uj〉〈uj〉

)1/2 =
(∣∣〈ū〉

∣∣2 +
∣∣〈u′〉

∣∣2 + 2
∣∣〈ū〉

∣∣∣∣〈u′〉
∣∣ cos γ

)

× 1∣∣∣〈ū〉 + 〈u′〉
∣∣∣

=
(
Q2 + q2 + 2Qq cos γ

)
× 1∣∣∣〈ū〉 + 〈u′〉

∣∣∣
. (75)

and Walker, 1970), we get

1∣∣〈ū〉 + 〈u′〉
∣∣ =

1

Q

∞∑

l=0

slPl

(
cos(π − θ)

)

=

∞∑

l=0

ql

Ql+1

4π

2l + 1

l∑

m=−l

Y ∗
lm(π − θ′, π + φ′)Ylm(θ̄, φ̄)

= 4π

∞∑

l=0

l∑

m=−l

1

2l + 1

ql

Ql+1
Y ∗

lm(π − θ′, π + φ′)Ylm(θ̄, φ̄)

= 4π

∞∑

l=0

l∑

m=−l

(−1)m

2l + 1

ql

Ql+1
Y ∗

lm(θ′, φ′)Ylm(θ̄, φ̄).

Here, Pl(z) is the Legendre polynomial of degree l. Clearly if Q < q, we should
expand in terms of the ratio Q/q. If we use q< to denote the smaller and q> to denote
the larger of q and Q, then the above equation can be written as Equation (74).

20 For example, Equations (71) to (73) involve computing various statistical quan-
tities by averaging their effect over all possible values of the random velocity 〈u′〉
with the time-averaged, spatially-averaged velocity 〈ū〉 prescribed to be some fixed
quantity.

21 Note that
∣∣〈ū〉 + 〈u′〉

∣∣2 =
(
〈ū〉 + 〈u′〉

)
·
(
〈ū〉 + 〈u′〉

)

=
(∣∣〈ū〉

∣∣2 +
∣∣〈u′〉

∣∣2 + 2〈ū〉 · 〈u′〉
)
,

where · denotes the scalar product. Also, recall that by definition of the scalar
product 〈ū〉 · 〈u′〉 =

∣∣〈ū〉
∣∣∣∣〈u′〉

∣∣ cos γ, where γ is the angle between the vectors 〈ū〉
and 〈u′〉.
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If we substitute Equations (74) and (75) in Equations (71), (72) and
(73), we obtain the following explicit results:22

∣∣〈u〉
∣∣ = 4π

∞∑

l=0

l∑

m=−l

(−1)m

(2l + 1)

{

(
Q2a

(1)[−l−1]+
lm + a

(1)[−l+1]+
lm + 2Qa

(2)[−l]+
lm

)
Ylm

(
θ̄, φ̄

)
Ql +

(
Q2a

(1)[l]−
lm + a

(1)[l+2]−
lm + 2Qa

(2)[l+1]−
lm

)Ylm

(
θ̄, φ̄

)

Ql+1

}
; (76)

∣∣〈u〉
∣∣〈u′

i〉 = 4π
∞∑

l=0

l∑

m=−l

(−1)m

(2l + 1)

{

(
Q2a

(3)[−l−1]+
lm;i + a

(3)[−l+1]+
lm;i + 2Qa

(4)[−l]+
lm;i

)
Ylm

(
θ̄, φ̄

)
Ql +

(
Q2a

(3)[l]−
lm;i + a

(3)[l+2]−
lm;i + 2Qa

(4)[l+1]−
lm;i

)Ylm

(
θ̄, φ̄

)

Ql+1

}
; (77)

and

∣∣〈u〉
∣∣∣∣〈u′〉

∣∣2 = 4π
∞∑

l=0

l∑

m=−l

(−1)m

(2l + 1)

{

(
Q2a

(1)[−l+1]+
lm + a

(1)[−l+3]+
lm + 2Qa

(2)[−l+2]+
lm

)
Ylm

(
θ̄, φ̄

)
Ql +

(
Q2a

(1)[l+2]−
lm + a

(1)[l+4]−
lm + 2Qa

(2)[l+3]−
lm

)Ylm

(
θ̄, φ̄

)

Ql+1

}
. (78)

The coefficients in Equations (76), (77), and (78) are:

a
(1)[r]−,+

lm =
∫

B−,+(Q)

Y ∗
lm

(
θ′, φ′)∣∣〈u′〉

∣∣rΨ
(
〈u′〉

)
d〈u′〉; (79)

a
(2)[r]−,+

lm =
∫

B−,+(Q)

Y ∗
lm

(
θ′, φ′)∣∣〈u′〉

∣∣r cos γ Ψ
(
〈u′〉

)
d〈u′〉; (80)

a
(3)[r]−,+

lm;i =
∫

B−,+(Q)

Y ∗
lm

(
θ′, φ′)∣∣〈u′〉

∣∣r〈u′
i〉Ψ

(
〈u′〉

)
d〈u′〉; (81)

a
(4)[r]−,+

lm;i =
∫

B−,+(Q)

Y ∗
lm

(
θ′, φ′)∣∣〈u′〉

∣∣r〈u′
i〉 cos γ Ψ

(
〈u′〉

)
d〈u′〉; (82)

22 The series in Equation (74) is uniformly and absolutely convergent, so the
summation and integration operations may be exchanged by the Lebesgue theorem
on dominated convergence (Spiegel, 1969).
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Here, B−(Q) ≡
{
〈u′〉 : |〈u′〉| < |〈ū〉| ≡ Q

}
and B+(Q) ≡

{
〈u′〉 :

|〈u′〉| > |〈ū〉| ≡ Q
}

are regions in the velocity fluctuation space inside
and outside, respectively, a sphere of radius Q.

To complete the evaluation of f̄i and F , we require a specification for
the velocity PDF Ψ

(
〈u′〉

)
. To proceed, we must recognize that Ψ

(
〈u′〉

)

is not something “physically real” and “absolute”, but rather an encod-
ing of a certain state of knowledge about the range of possible values
of the spatially filtered velocity fluctuations. The impoverished frame-
work of the k-ε model provides predictions only of the first and second
moments of 〈u′

i〉 [the latter of which are obtained using the Boussinesq
eddy viscosity approximation of Equation (23)]. Given this (necessar-
ily) incomplete state of knowledge about 〈u′

i〉, it is logically desirable
to assign Ψ

(
〈u′〉

)
in accordance with the maximum entropy principle

(MAXENT). MAXENT probability assignments (Jaynes, 1982) have a
number of intuitively appealing interpretations. The maximum entropy
distribution is the safest, most ‘conservative’ distribution to use for
prediction because it spreads the probability out over the full range of
possible values of the random variable (e.g., 〈u′

i〉) that are consistent
with our given information or constraints (e.g., prescribed mean values
〈u′

i〉 = 0, and Reynolds stresses 〈u′
i〉〈u′

j〉) and, in doing so, prevents us
from making arbitrary assumptions not justified by our information.

In the current problem, where our state of knowledge is limited to
the first and second moments of 〈u′

i〉, the maximization of the entropy
functional selects among all the possible probability distributions sat-
isfying constraints imposed by the given first and second moments of
the spatially filtered velocity fluctuations, the Gaussian PDF with the
form

Ψ
(
〈u′〉

)
=

1
(
2π
)3/2

√
det
(
Σ
) exp

(
−1

2
〈u′〉TΣ−1〈u′〉

)
, (83)

where det(·) denotes determinant, T is the matrix transpose operation,
and Σ ≡ 〈u′

i〉〈u′
j〉 is the covariance matrix of the spatially filtered veloc-

ity fluctuations (Reynolds stress tensor). With Ψ
(
〈u′〉

)
given by Equa-

tion (83) [elliptically symmetric distribution], the integrals defining
the coefficients in Equations (79) to (82) can be evaluated straightfor-
wardly by transforming Ψ

(
〈u′〉

)
to a spherically symmetric distribution

through the diagonalization of Σ (assumed to be positive definite),
and then evaluating the resulting integrals in spherical coordinates
with infinitessimal volume element d〈u′〉 =

∣∣〈u′〉
∣∣2 sin θ′ d

∣∣〈u′〉
∣∣dθ′ dφ′ ≡∣∣〈u′〉

∣∣2 d
∣∣〈u′〉

∣∣ dΩ′ (where dΩ′ ≡ sin θ′ dθ′ dφ′ is the differential solid
angle with units of steradians).
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To illustrate the application of Equations (76) to (82) to the eval-
uation of f̄i and F , consider the simple example of isotropic Gaussian
turbulence with the covariance matrix of the spatially filtered veloc-
ity fluctuations in Equation (83) specified as Σ ≡ 〈u′

i〉〈u′
j〉 = 2

3κI
[where I is the (3 × 3) identity matrix]. Let us calculate the purely
‘isotropic’ contribution to f̄i and F arising from the l = 0, m = 0
term in Equations (76) to (78). Noting that Y00(θ, φ) = 1

/√
4π, it is

straightforward to evaluate the coefficients of Equations (79) to (82)
for l = m = 0. Because Ψ

(
〈u′〉

)
depends only on

∣∣〈u′〉
∣∣, the integral

over the direction (or, angular part) of 〈u′〉 involves only elementary
trigonometric functions and can be carried out easily to give

a
(1)[r]−,+

00 = 2
√

πAI−,+
(
r + 2;Q

)
, r = −1, 0, 1 . . . ; (84)

a
(2)[r]−,+

00 = 0, r = −1, 0, 1 . . . ; (85)

a
(3)[r]−,+

00;i = 0, r = −1, 0, 1 . . . ; (86)

a
(4)[r]−+

00;i =
√

πA

(
2
3
〈ūi〉
Q

)
I−,+

(
r + 3;Q

)
, r = −1, 0, 1, . . . . (87)

Here, A ≡ 3
√

3
/
8(πκ)3/2. Furthermore,

I−
(
n;Q

)
≡
∫ Q

0

∣∣〈u′〉
∣∣n exp

(
−α
∣∣〈u′〉

∣∣2
)

d
∣∣〈u′〉

∣∣, n = 0, 1, 2, . . . (88)

and

I+
(
n;Q

)
≡
∫ ∞

Q

∣∣〈u′〉
∣∣n exp

(
−α
∣∣〈u′〉

∣∣2
)

d
∣∣〈u′〉

∣∣, n = 0, 1, 2, . . . , (89)

with α ≡ 3
/(

4κ
)
. The integrals over the ‘radial’ part

∣∣〈u′〉
∣∣ in Equa-

tions (88) and (89) can be evaluated23 to give

I−
(
n;Q

)
=

1
2
α−(n+1)/2γ

(
(n + 1)/2;αQ2)

=
1
2
α−(n+1)/2γ

(
(n + 1)/2; 3Q2/4κ) (90)

and

I+
(
n;Q

)
=

1
2
α−(n+1)/2Γ

(
(n + 1)/2;αQ2)

=
1
2
α−(n+1)/2Γ

(
(n + 1)/2; 3Q2/4κ), (91)

23 Put
∣∣〈u′〉

∣∣ = (t/α)1/2 in Equations (88) and (89), so d
∣∣〈u′〉

∣∣ = 1
2
α−1/2t−1/2 dt.
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where γ(ν;x) and Γ(ν;x) are, respectively, the incomplete gamma func-
tion and complementary incomplete gamma function.24

We derive an explicit form for f̄i and F arising from the purely
‘isotropic’ contribution provided by the l = 0, m = 0 spherical har-
monic mode. To this end, substitute Equations (84) to (91) into Equa-
tions (76) to (78) for the (l,m) = (0, 0) term, and insert these results
into Equations (69) and (70). This gives finally (on using the definitions
of α and A)

f̄i ≈ −CDÂQ〈ūi〉
[

2√
π

γ

(
3
2
;
3Q2

4κ

)
+

3√
π

Q

κ1/2
Γ

(
1;

3Q2

4κ

)

+
16

9
√

π

κ

Q2

(
3
√

π

4
+

1
2
γ

(
5
2
;
3Q2

4κ

))]
(92)

and

F ≈ −CDÂQκ

[
4
3

+
20
√

3
9
√

π

Q

κ1/2
Γ

(
2;

3Q2

4κ

)
+

16
√

3
9
√

π

κ1/2

Q
Γ

(
3;

3Q2

4κ

)

+
8

9
√

π
γ

(
5
2
;
3Q2

4κ

)
+

32
9
√

π

κ

Q2
γ

(
7
2
;
3Q2

4κ

)]
. (93)

Interestingly, the purely ‘isotropic’ contribution from the (l,m) = (0, 0)
spherical harmonic mode to F appears as a sink in the transport equa-
tion for κ and represents, therefore, a transfer of turbulence energy
from the resolved scales (i.e., scales larger than the filter width ∆) to
the sub-filter motions. However, for other spherical harmonic modes
(viz., for l > 0 and |m| ≥ 0) there can be backscatter , i.e. transfer
of turbulence energy from the sub-filter motions to the resolved scales
of the spatially-filtered velocity fluctuations implying terms in F that
appear as a source in the κ-equation.

24 The incomplete gamma function γ(ν; x) and its complementary cohort Γ(ν; x)
are defined by the integral representations (Spanier and Oldham, 1987)

γ(ν; x) =

∫ x

0

tν−1 exp(−t)dt, x ≥ 0, ν > 0

and

Γ(ν; x) =

∫ ∞

x

tν−1 exp(−t)dt, x ≥ 0, ν > 0.

These two functions sum to the complete gamma function Γ(ν), viz.

γ(ν; x) + Γ(ν; x) = Γ(ν).

3d_drag_pt2.tex; 8/01/2004; 7:39; p.41



42 FUE-SANG LIEN, EUGENE YEE, AND JOHN D. WILSON

References

Ayotte, K.W., Finnigan, J.J. and Raupach, M.R.: 1999, ‘A Second-Order Closure
for Neutrally Stratified Vegetative Canopy Flows’, Boundary-Layer Meteorol. 90,
189–216.

Belcher, S.E., Jerram, N. and Hunt, J.C.R.: 2003, ‘Adjustment of a Turbulent
Boundary Layer to a Canopy of Roughness Elements’, J. Fluid Mech. 488,
369–398.

Brown, M.J., Lawson, R.E., DeCroix, D.S. and Lee, R.L.: 2001, ‘Comparison of
Centerline Velocity Measurements Obtained Around 2D and 3D Building Arrays
in a Wind Tunnel’, Report LA-UR-01-4138, Los Alamos National Laboratory, 7
pp.

Cowan, I.R.: 1968, ‘Mass, Heat, and Momentum Exchange Between Stands of Plants
and Their Atmospheric Environment’, Q. J. R. Meteorol. Soc. 94, 318–332.

Daly, B.J. and Harlow, F.H.: 1970, ‘Transport Equations of Turbulence’, Phys. Fluids
13, 2634–2649.

DeCroix, D.S., Smith, W.S., Streit, G.E. and Brown, M.J.: 2000, ‘Large-Eddy and
Gaussian Simulations of Downwind Dispersion From Large Building HVAC Ex-
haust’, in preprint, 11th Joint Conference on the Applications of Air Pollution
Meteorology with the A&WMA, American Meteorological Society, Boston, MA,
pp. 53–58.

Finnigan, J.J.: 1985, ‘Turbulent Transport in Flexible Plant Canopies’, in
B.A. Hutchison and B.B. Hicks (eds), The Forest-Atmosphere Interaction,
D. Reidel Publishing Company, Boston, pp. 443–480.

Getachew, D., Minkowycz, W.J. and Lage, J.L.: 2000, ‘A Modified Form of the k-ε
Model for Turbulent Flows of an Incompressible Fluid in Porous Media’, Int. J.
Heat Mass Transfer 43, 2909–2915.

Ghosal, S. and Moin, P.: 1995, ‘The Basic Equations for the Large-Eddy Simulation
of Turbulent Flows in Complex Geometry’, J. Comput. Phys. 118, 24–37.

Green, S.R.: 1992, ‘Modelling Turbulent Air Flow in a Stand of Widely-Spaced
Trees’, J. Comp. Fluid Dyn. and Applic. 5, 294–312.
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