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Abstract-When a probability density function (pdf) is to be formed on the basis of incomplete information, 
the “maximum missing information” (mmi) pdf (Jaynes. Phys. Reo. 106, 62M30, 1957) is theoretically 
preferable. We compare the performance of Lagrangian stochastic (LS) models of vertical dispersion in the 
convective boundary layer. satisfying Thomson’s (J. Fluid Mech. 180,529-556, 1987) well-mixed condition, 
that derive from the often-used bi-Gaussian pdf(eg. Weil. J. utmos. Sci. 47,501-5 15. 1990) and from the mmi 
pdf. The bi-Gaussian based LS model, which we tailor to reproduce velocity moments to fourth order, is less 
complex than the corresponding mmi based model, and gives similar (good) predictions, which are arguably 
slightly superior (as regards agreement with convection tank data) to those stemming from the original 
bi-Gaussian based model (Luhar and Britter, Arnlospherir Enuironmenr 23, 191 l-1924, 1989), wherein 
knowledge of the kurtosis was forsaken. 

Kry \vorrl it1de.r Probability density function (pdf), maximum missing information (mmi) pdf, bi-Gaussian 
pdf. Lagrangian stochastic model 

1. INTRODUCTION 

When taking advantage of Thomson’s (1987) well- 
mixed condition (w.m.c.) in designing Lagrangian 
stochastic (LS) models of trajectories in turbulent 
flow. we must specify the Eulerian probability density 
function (pdf) of the fluctuating velocity. Except in 
idealized flows, that pdf is not exactly known, so it is 
usual practise to assume a pdf, guided by experi- 
mental evidence. Flesch and Wilson (1992) showed 
that adding increasingly numerous moment con- 
straints. to shape an of hoc pdf so as to describe highly 
non-Gaussian turbulence, can result in deteriorating 
agreement between simulation and measurement. It is 
clear then that criteria are needed in formulating the 
pdf. and we here investigate using the “maximum 
missing information” (mmi) pdf. 

Though our point is general, we will discuss the 
choice of a pdf in the context of modelling vertical 
dispersion in the convective boundary layer (CBL). 
Up to now, the most widely used pdf for the CBL has 
been the bi-Gaussian (a linear combination of two 
Gaussian functions), proposed by Baerentsen and 
Berkowitz (1984). supported by atmospheric observa- 
tions (Quintarelli. 1990), and used to build a well- 
mixed LS model by Luhar and Britter (1989) and Weil 

(1990). Our considerations lead to an LS model that 
performs slightly better than its predecessors. 

2. CRITERIA IN CONSTRUCTlNG A PDF 

Assume we require to choose a pdf p(x) for a vari- 
able x, which is random on the range (- w, cc). Ac- 
cording to information theory (Jaynes, 1957), p(x) 
should: 

a. reflect all the information we actually have; and 
b. maximize 

s 

% 
H(P)= - p(x) In p(x) dx. (1) 

- * 

H(p) quantifies “missing information” (Baierlein, 
1971; Guiasu, 1977), i.e provides a numerical measure 
of the amount of additional information that is 
needed to determine the pdf correctly and uniquely. It 
may be surprising that the “amount of missing in- 
formation”, on first sight a qualitative concept, can be 
given a unique quantitative measure. We will attempt 
no formal justification, but perhaps the following 
words might help. We reduce our uncertainty about 
the pdf with the help of information given us (&g. 
moment constraints). However, uncertainty remains, 
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because an infinite number of pdfs are consistent with even. from (I)) is the highest order imposed moment 
the given (finite number of) constraints. The principle constraint. 
of scientific objectivity dictates that we be maximally 
uncommitted about what we do not know concerning 
the pdf, and the requirement that p(x) maximizes H(p) 3. PDFS FOR VERTICAL VELOCITY (w) IN THE CBL 
enforces that principle: by satisfying (b) in our choice 
of p(x), we are “maximally non-committal with re- We assume available the information that: 
spect to missing information” (Jaynes, 1957). 

Now, we seek a pdf p(x) that maximizes H(p). sub- 
ject to the constraints: 

(w)=O 

(w3)=s(w*)3’* 

s I sip(.r)ds=yj (j=l,Z, . . . . N) (2) - 71 
and the normalization condition 1: I p(x) dx = I. We 
set pi =0, without loss of generality. Introducing ap- 
propriate Lagrange multipliers (&}/=,, (Swokowski, 
1979), one seeks maximization of the functional 
H* = H*(p) defined from 

H*(p)= - P(Y) In p(.u)ds+(&-I) 

(w4) =3.0 (w=)= 

where S is the skewness. A value of about 3 for the 
kurtosis is supported by data from the Boulder At- 
mospheric Observatory (see Fig. I), and by aircraft 
observations (Hanna. 1982). 

3. I. The mmi pd/ 

The mmi pdf. which is in principle to be preferred. 
is: 

fi, ~,(/l,-~~,.~‘p(r) ‘0. At each of 10 heights within the CBL, we determined 
numerically the set of values (lo, 1,. ., i.,) consistent 
with the four velocity-moment constraints, and the 

Functional variation with respect to the unknown normalization condition. 
pdf. PW 

(3) 

yields the following mmi pdf: 

I. (4) 

Where the N + I unknown Lagrange multipliers are 
determined from the normalization condition and the 
given moments by the implicit relationships 

and 

pj=i[lr-.xjexp (-i,L,rl)dr 

j=l.2 , . . . . N. (6) 
If N > 2, an analytical solution is impossible, because 
the numerator of equation (6) involves an integral 
which cannot in general be expressed in terms of 
elementary functions. We infer that: 

(I) If we seek the mmi pdf for a random variable 
x defined on (---2. c*J). subject to constraints (i.e. 
available information) of the usual form (namely, a set 
of moment constraints), our search can succeed only if 
we have an euen number of moment constraints. 

(II) From equation (4), to ensure the pdf repro- 
duces the known moments and vanishes for very large 

3.2. Eli-Gaussian pdj 

Baerentsen and Berkowitz (1984; hereafter BB) pro- 
posed to use in the CBL the pdf 

p(w, z)= &exp[--1 

+&exp[ -*I (7) 

where A and B are the fractional areas occupied by 
thermals and the compensating downdrafts, and 
wA(wB) and cA(ca) are the mean and the standard 
deviation of the fluctuating vertical velocity within 
thermals (downdrafts). Making no use of information 

0123456789 
Kurtosis 

Fig. 1. Kurtosis of the vertical velocity during unstable 
stratification at the Boulder Atmospheric Observatory 
tower. The solid line is K = 3.0. the kurtosis for Gaus- 

[xl, we must require &>O. where N (necessarily Sian turbulence 
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on the kurtosis, but assuming 

BB obtained the parameters: 

~r,=s~=[((~~3)2+8(\(.2)3)1’2-(\\.3)]/4(~~2) 

a,=rv,~=(w2)/2w8 (9) 

A = wB/( iv” + wB), B = wA /( n’” + w,) 

Luhar and Britter (1989) used equations (9) in their LS 
model. Weil (1990). assuming (rather than equation 
(8)) that aA/wA=~B/~vB=R (where R is an arbitrary 
constant taken as 1.5). used similar expressions. Note 
that in view of the discussion of Section 2, it is not 
possible to construct the mmi pdf corresponding to 
the bi-Gaussian equations (9). 

One is quite at liberty to specify the parameters of 
the bi-Gaussian otherwise than equation (9). We are 
interested to see whether the bi-Gaussian can approx- 
imate the mmi pdf. fhat corresponds to the given in- 
,/ormarion. The mmi pdf, as stated, made use of the 
known kurtosis: so that information, if the compari- 
son is to be fair, must be brought to bear in fitting the 
bi-Gaussian. 

Invoking knowledge of the kurtosis, we require to 
solve 

A+B=l 

A(a2,+~‘~)+B(a~+,~~)=(\(.*) (10) 

A(3w, o~+r~~)--(3w,~~+\c~)=(,(.3) 

A(3~j,+6\r:af,+n,~)+B(3aJB+6,~,~a~+\(’;:)=(r~4). 

Now assumption (8) is not supported by experimental 
data (Lenschow and Stephens, 1982). so we close the 
set of equations (10) by instead assuming 

A = 0.4. (11) 

This is supported by many experiments (Hunt et al., 
1988; Fritsch and Businger, 1973; among others), but 
is not valid as stratification tends towards the neutral 
condition. Under this assumption, and provided 
S < 1.12 (which is usually the case; LeMone, 1990) the 
solution is 

A=0.4. B=0.6 

wA=(\v3)1’3. ws=(2/3) (w3)l’3 

a,=((~*)-0.280 (w~)*‘~)~‘* 

a,=((~*)-0.927 (n~3)2’3)“2. (12) 

Figure 2 compares the mmi pdf with the two 
bi-Gaussian pdfs, for SsO.2, 0.65 and 1.0. Not sur- 
prisingly, our alternate bi-Gaussian pdf generally 
approximates the mmi pdf better than does the BB 
bi-Gaussian pdf (pay particular attention to the pdf 
near the mode, whose value greatly affects the mean 
concentration field; Hunt et al., 1988). 

b’ 
0.3 
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Fig. 2. Comparison of the “correct” pdf which maxi- 
mizes the missing information with both the present 
and Baerentsen and Berkowitz bi-Gaussian pdfs for (a) 

S=O.2; (b) S=O.65, and (c) S= 1.0. 

4. LS MODELS FOR THE CBL, FROM BI-GAUSSIAN AND 

MMI  PDF-S 

The well-mixed LS model corresponding to the 
Baerentsen and Berkowitz bi-Gaussian pdf was de- 
rived by Luhar and Britter (1989), to whom the reader 
may refer. A similar derivation, based on our (alterna- 
tively fitted) bi-Gaussian, yields a similar model: 

dw=[ -TQ++-&+(2+)“’ dP (13) 

(terms have the same meaning as in LB). Q  and 4 are 
given by: 

(14) 
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In the case of the mmi pdf, we obtain the model 
equation 

dw=a(H’,z)dr+ (16) 
(15) 

where 

w + ws 
+t?erf - 

( > Jr%3 

I 
?UB w(w + H’J aas 

+ aBil+--- 
aw, 

z fJiJ az w- Ps a2 1 

0.2 

N 

Fig. 3. Prediction of LS model corresponding to the mmi pdf for the CWIC distribution in 
the CBL for three release heights: (a) 2,/Z, =0.067; (b) ZJZ, =0.24; and (c) ZJZ, = 0.49. 
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We adopted exactly the same turbulence statistics 
for the CBL as did LB, and we carried out LS traject- 
ory simulations, using both the bi-Gaussian-based 
models and the mmi model, for tracer particles re- 
leased at source heights Z,=O.O67. 0.24 or 0.49; Zi 
(where Zi is the CBL depth). Perfect reflection was 
imposed at the top and bottom boundaries, and the 
time step was taken to be 0.01 T. The model based on 

the mmi pdf consumed at least an order of magnitude 
more computer time than the bi-Gaussian model. 

The mmi-based model and our bi-Gaussian based 
model produce fields of crosswind integrated con- 
centration (CWIC) that are almost identical, but 
different from the prediction that stems from the BB 
bi-Gaussian (Figs 3 and 4). A feature we for the 
moment focus on, familiar from the convection tank 

0 1 2 3 4 

Fig. 4. Prediction of LS model corresponding to the present bi-Gaussian pdf for the CWIC 
distribution in the CBL for three release heights: (a) ZJZ,=O.O67; (b) ZJZ,=O.24; and (c) 

ZJZ,=O.49. 
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Table 1. Location X,,, of maximum surface concentration according to LS models. and; WD water-tank experiment: Lamb 
LES/LS simulation; CONDORS field experiment 

Model 

Z. 
Convection tank LS present 

WD Field CONDORS LES/LS LAMB* LS LB LS MMIt bi-Gaussian 

0.24 0.4 0.6 0.78 0.6kO.2 0.68 
0.32 0.8xI.9 1.03 0.8 kO.2 0.89 
0.49 0.8 I.2 1.54 1.4+0.2 1.33 

*Slightly different release heights were used in Lamb’s works: 0.26 corresponding 10 0.24 of the WD and 0.50 lo 0.49 of the 
WD. 

t For the mmi LS model, the S,,, is obtained from the calculated CWIC distribution rather than from equation (181. 
However. we infer that the mmi LS model and the LS model derived from the present bi-Gaussian pdf yield the same 
X mil, because the mode of velocity in these two pdfs are nearly same. 

experiments of Willis and DeardortT( 1978.1981; here- 
after WD). is that the locus of the maximum concen- 
tration descends until it reaches the ground. causing 
the maximum ground-level concentration to occur 
much closer to the source than it would in un-skewed 

turbulence (of otherwise equal properties). For a given 
source height, the distance X,,, to the point of max- 

imum ground-level concentration can be estimated by 
(Misra. 1982; Li and Briggs. 1987) 

(18) 

where X,,, is non-dimensional on the translational 
velocity U and the convective time scale ZJK,. 
Table 1 gives X,,,, according to the present LS 
models; the WD water-tank experiments; a simulation 
by Lamb (1978. 1982) of particle trajectories in the 
turbulent field generated by DeardorlTs (1974) large- 
eddy simulation: and the CONDORS field experi- 
ment (Briggs. 1989). We conclude that - -in regard to 
x - rlmr the mmi model (and its more economical 
relative, our alternatively fitted bi-Gaussian) is su- 
perior to the model based on the BB bi-Gaussian. 
A weakness of the latter pdf is that it implies 

Av, ((w3)2+8(\v2)3)“z-(\v3) -= - 
S(d) 4(w*) ((w~)*+~(w~)~)~‘* 

<o 

for (w*) #O. The magnitude of the mean velocity in 
the downdrafts decreases with increasing (b?). and 
so takes its maximum value at (\v3)=0. The BB 
bi-Gaussian model makes .Y,,, increase with increas- 
ing skewness, contradicting the water-tank simula- 
tions. In our alternately fitted bi-Gaussian. the mean 
velocity in the thermals and downdrafts is determined 
by the third order moment only, or by skewness. 
(w’)/ ( \v’)~‘*, for given velocity variance. 

Returning to Fig. 4, overall, the LS models simulate 
the CWIC distribution in the lower CBL quite well 
(compare our results with fig. 7 of WD, 1976; fig. 4 of 
WD, 1978; and fig. 4 of WD, I98 1). We note, however, 
an overprediction of the mean concentration in the 
upper CBL, particularly near the top boundary (the 
LB simulation shows the same discrepancy). We satis- 

fied ourselves that this feature of the simulations is 
not due to the small (< 10%) increase in CBL depth 
over the period of each tank experiment, nor to de- 
trainment of tracer out of the mixed layer (to address 
the latter possibility we used partial. rather than per- 
fect. reflection at the top boundary). Possibly the 
velocity statistics we (and others) have adopted poorly 
represent the actual flow in and near the interfacial 

layer. That the maximum CWIC line does not im- 
pinge on the CBL top (as shown by the WD physical 
experiments. Lamb’s ( 1982) numerical experiments 
and the CONDORS field experiments) suggests 

a mechanism for repelling tracer. However.  on ap- 
plying the LS model to the case Z,, Zi =0.75. we get 
a high CWIC tongue which reaches the CBL top and 
is reflected back. 

5. CONCLUSION 

Although it is not possible to be conclusive on the 
basis of comparison with experimental evidence. we 
suggest on the basis of the foregoing that Lagrangian 
stochastic models of CBL dispersion should be based 
on the maximum missing information pdf for vertical 

velocity, the latter based on the first four Eulerian 
velocity moments (assumed given). A bi-Gaussian 
based model is practically as good, when fitted as we 
have shown here (to reproduce kurtosis). These details 
improve the prediction of the location of maximum 

ground-level concentration. 

A~krto~~,led~~,,~r,~r This *cork wab supported by the Natural 
Sciences and Engineering Council of Canada and Atmo- 
spheric Environment Service of Environment Canada. 
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