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Abstract. The exact Eulerian veIocity probability density function (pdf) of a turbulent field is generally 
unknown, and one normally has available only partial information in the form of low order moments. 
We compare two alternative Lagrangian Stochastic (LS) approaches formed from this partial infor- 
mation, (i) the "moments approximation" approach (Kaplan and Dinar, 1993); and (ii) the well-mixed 
model (Thomson, 1987) that corresponds to the "maximum missing information" pdf formed from the 
available information. We show that the moments approximation model does not in general satisfy 
the well-mixed constraint, and can give an inferior prediction of dispersion. 

1. Introduction 

In studies of turbulent dispersion, it is usual to treat  the underlying turbulent flow 
as "statistically known,"  the notion normally indicating no more  than that means 

and variances of the turbulent velocity field are specified. This has been completely 

satisfactory for simple (e.g., gradient-diffusion) models of dispersion, which hinge 

on rudimentary flow knowledge. But modern  Lagrangian stochastic (LS) " R a n d o m  
Flight" models,  which are used to calculate an ensemble of turbulent trajectories 

and thus to mimic dispersion, call for and can usefully employ,  a deeper  statistical 

knowledge of the flow: and so give sharper definition to what is implied (in the 
context of dispersion) by calling a flow "known."  

Since Thomson ' s  (1987) provision of a selection criterion for LS models (the 
"well-mixed condit ion," Section 2), "known flow" has come to mean that the 

probabili ty density function (pdf) Pa of the Eulerian velocity field is a mathema-  
tically-known function of position. The beauty of Thomson ' s  criterion is that,  

given complete Eulerian information (Pa), one may derive (with reasonable as- 
sumptions) a consistent (though not necessarily unique) trajectory model.  Further  

(rigorous) developments can only pin trajectory models to an even more  complete 

specification of the turbulent flow (e.g., two-point,  joint pdf 's) .  
Here  we focus on the fact that only for ideal flows is the velocity pdf Pa 

completely known. For  any real flow, one has available only partial information 
on Pa, probably in the form of a few low-order moments .  The LS model  for any 
real flow, therefore,  must be built f rom partial information. To overcome this 
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difficulty, Kaplan and Dinar I (1992, 1993) introduced a "moments  approxi- 
mation,"  whereby only a finite number of moments of the Eulerian turbulent 
velocity is needed. The Kaplan-Dinar  method relieves the derivation of a trajec- 
tory model equation of any fundamental difficulty, but a number of questions 
remain to be answered: 

(i) Does the moments approximation model satisfy the well-mixed constraint? 
(ii) How many terms in the power series for the conditional mean acceleration 

of a particle need to be retained, to obtain a satisfactory simulation? 
(iii) How many moments are to be involved? 

We shall address these questions, and we consider also an alternative approach 
to building an LS model from partial information on the flow (via the "maximum 
missing information" pdf corresponding to the given information). We confine our 
attention to steady-state, one-dimensional problems. 

2. The Exact Model and the Approximate Model 

The general form of a one-dimensional LS model for the evolution of particle 
state (z, w) under steady state flow conditions is (Thomson, 1987) 

dw = a(w, z) dt + b(w, z) d~:, (1) 

dz = w dto (2) 

Here  a(w, z) is the conditional mean particle acceleration, and b(w, z)dE is a 
random forcing, d~: being a Gaussian random number with mean zero and variance 
dl. 

2.1. THE WELL-MIXED CONSTRAINT 

Corresponding to (1) and (2) is a Fokker-Planck equation which governs the 
evolution of the joint position-velocity pdf of dispersing particles, p(w,  z, t): 

Op_ O ( w p ) -  0 (ap) + l 02 2 
oz ow 2 7w (b p) . (3) 

Suppose tracer particles are released at t = 0 such that 

p(w,  z, O) oc p(z)p~(w, z) , 

where p is the fluid density (henceforth assumed constant), and p~ is the Eulerian 
velocity pdf: then the tracer particles are "well- mixed" with respect to position 
and velocity. It is natural to expect that they remain well mixed, so that for all t, 

1 The Kaplan-Dinar model is comprehensive in that it is intended to be applicable to the calculation of 
multi-particle trajectories (with correct relative velocity statistics) in three-dimensional inhomogeneous 
turbulence. We here consider only the basic case of a single particle in one-dimensional turbulence. 
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p(w, z, t) ~ po(w, z ) .  

It follows that pa(w, z) should satisfy (3), i.e., 

1 0 2 2 
_ o ( ~ p o )  _ • (~po) + 2 Y w  ~ (b po)  Oz Ow 

= 0 .  (4) 

This is the well-mixed constraint, which restricts the selection of a(w, z) and 
b(w, z). Evidently the w.m.c, prohibits the spurious growth of order from disorder, 
and thus (speaking informally) is an entropy-evolution constraint. 

Now, b(w, z) can be obtained from the Kolmogorov inertial subrange theory as 
(Monin and Yaglom, 1975) 

b(w, z) = " ~ o ~  (5) 

or (in principle equivalently; Thomson, 1987) by 

b(w, Z) = x / 2 M 2  ; (6) 

F ~  

T 

Co is a (supposedly) universal constant, here taken to be 2.0; E is the rate of 
dissipation of the turbulent kinetic energy; M2 (-- 0-2) is the variance of the vertical 
velocity; and r is the Lagrangian decorrelation time scale. 

The difference between the exact model and the approximate model lies in the 
specification of a(w, z). 

2.2. T H E  EXACT MODEL 

If the Eulerian pdf for the vertical velocity pa(w, z) is known, a(w, z) can be 
derived from (4) in principle as (Thomson, 1987) 

a(w, z)  -- , (7) 
Pa 

where 05 is the solution of 

o4, _ opo (8) 
Ow 3z 

satisfying 05--+0 as lw I ~ 2. However, only for particular forms for pa(W, Z) can 
one solve analytically for 05. 

2 .3 .  T H E  MOMENTS APPROXIMATION MODEL 

To avoid needing explicitly the Eulerian pdf, Kaplan and Dinar (1992, 1993) 
approximate a(w, z) as: 
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a(w, z) = Co(z) + c l ( z ) w  + C2(z)w a + 

+ C3(z)w 3 + . . .  + C~:(z)w k + " , .  (9) 

Substituting this expansion into the governing equation for the characteristic func- 
tion of pa(w, z) 

0 ( 0 ,  Z) = pa(W, z)e iw~ dw , 

and making use of Equation (4), we have 

- i  020 iO [CoO - iC1 O0 020 
oz o---o- L ~ - c2--oo 2 + . . .  

]b2 "or- ~ 1 )k t kck  -}- " " " -}- - -  0 2 0  = 0 (10) 
2 

(note that no summation is implied by the recurring index k). 
Equation (10) indicates that satisfaction of the w.m.c, is guaranteed provided 

infinitely many terms in the expansion (9) are retained. However, the moments 
approximation method is useful only to the extent that one may truncate Equation 
(9) at a small number of terms: so we need to determine whether the w.m.c. 
remains satisfied (approximately) upon such truncation. 

By repeated differentiation of (10) with respect to 0, one can obtain (on setting 
0 = 0) a set of simultaneous equations for the coefficients Ci in terms of the 
moments Mi. Provided that the number of terms retained in (9) is finite, a closed 
solution for these coefficients in terms of a finite number of specified moments is 
available. For example, if we retain 5 terms (Co, C1, C2, C3 and C4) in (9), we 
must differentiate (10) five times, and obtain: 

CoMo + CaM1 + C2M2 + C3M3 + C4M4 - 

CoM1 + C1Mz + C2M3 + C3M4 + C4M5 - 

dM2 

dz 

1 dM3 b 2 
mo, 

2 dz 2 

CoMa + CaM3 + C2M4 + C3M5 + C4M6 - 
i dM~ 

3 dz 
b2M1 , (11) 

CoM3 + C1M4 + C2M5 + C3M6 + C4M7 - 
1 dM5 3 

b2M2 , 
4 dz 2 

CoM4 + C~M5 + C2M6 + C3M7 + C4M8 - 
1 dM6 

5 dz 
2b2M3 , 

where M~ is the k-th order moment of the turbulent velocity. In general if the 
expansion (9) for a(w) retains terms up to order w K, then the set of simultaneous 
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equations for the coefficients Ck (k ~< K) will involve moments as high as M2K. 
For the case of K = 1, we need to assume that dM3/dz = O. 

Our specification of the C's is slightly different from that used by Kaplan and 
Dinar, who made the approximation (from dimensional considerations) that C~ = 
-b2/2M2. Therefore the comparisons between "exact" and "approximate" models 

shown in the following section do not necessarily represent comparisons to the 
original Kaplan-Dinar model, but rather to a modified version of it. 

3. Comparison of the Exact and Approximate Models 

In this section we look at several ideal turbulence systems wherein the velocity 
pdf (hence all moments) are known. Our object is to examine any deterioration of 
the moments approximation model (relative to the exact model) due to truncation 
(neglect of high order moments). 

3.1. G A U S S I A N  TURBULENCE 

A Gaussian velocity pdf is a satisfactory approximation in many flows (Batchelor, 
1953), a familiar example being the atmospheric surface layer under neutral strati- 
fication. For Gaussian turbulence, the probability density function is 

1 (w 2 pa(w, z) - X/~-~M1/2 exp - 

and the moments are 2 

(12) 

m 2 n + i  = 0 

M2~ = ( 2 n -  1)!!M~. 

Using (12), one readily obtains the exact model (Thomson, 1987) 

2 I(W  a ( w , z ) = - z M - - W + -  + 1  - - ,  (14) 
2 dz 

and, by using (13), exactly the same expression arises following the approximate 
approach, 

1 dM2 b e 
C o -  , C1 . . . .  , 

2 dz 2M2 

1 dM: 
C : =  - - ,  C ~ = O ,  C 4 = 0 .  

2M2 dz 

(15) 

The above derivation shows that for Gaussian turbulence, these two methods 
are consistent with each other, which is not surprising since the pdf is fully defined 
by the first two moments. 

z (2n - 1)!! = (2n - 1 ) ( 2 n -  3 ) . . .  5.3.1. 
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3.2. HOMOOE>aEOUS NON-GAUSSIaN TURBULENCE 

We now examine  the flow having pdf  3 

1 w 
p,(w) = M-~2/2 exp - Ao + A1 + A2 + 

+ + A4 (~21/2) J t (16) 

where  the A's are re la ted  to skewness  (S = MJM~/2) and kurtosis  (K  = M4/M2). 
W e  shall use S = 0.65 and K = 3.0 (values typical of  the convect ive  bounda ry  
layer).  These  constraints ,  plus normal iza t ion ,  and the specification of  zero m e a n  

velocity,  imply 

Ao = 0.9881, AI = 0.5941, A2 = 0.3281, 
(17) 

A3 = -0 .2594 ,  A4 = 0 .0708.  

F r o m  Equa t ions  (7), (8), (16) and (17) it follows that  the exact  mode l  is: 

a(w) - 2M1/2 Aa + 2A2 w + 3A3 + 4A4 , 

(18) 

i .e. ,  the app rox ima te  mode l  (9) is actually exact  p rov ided  that  the  Ci are given 
by 4 

( C i -  b 2 ( i + l ) a i + l  
2 M (i+1)/2 ' (i = 0, 1, 2, 3) 

C, = 0 (i/> 4). (19) 

Consider  now the hypothe t ica l  case of  a worke r  not  pr ivi leged to know the pdf  

(16), who is given only a certain n u m b e r  of  veloci ty m o m e n t s ,  and who wishes to 

use that  res t r ic ted in format ion  in the approx ima t ion  (9), i .e. ,  the in fo rmat ion  (19) 
is not  avai lable  to this person.  

Le t  us for  convenience  set r = 30 [s] and M2 = 1 [me/s2]. The  exact  mode l  (18) 
becomes  

a(w) = -0 .01980  - 0.02187w + 0.02594w 2 - 0.009447w 3 . (18')  

O u r  worke r  knows some  or all of  these momen t s :  s 

3 Readers may recognize this pdf as being of the form of a maximum missing information pdf. 
However, this pdf is used here simply as a convenient example. 
4 We are indebted to Dr. N. Dinar for noting this formula. 
s These values for M5 --~ M8 follow from (16), although from the viewpoint of our worker unaware of 
(I6), they are simply data made available. 
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exact model 
. . . . .  3 term approximation 
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W 

Fig. 1. Comparison of a(w) in the exact model and the three-term approximation model. The flow 
is homogeneous and non-Gaussian. 

M o = l ,  M I = 0 ,  M 2 = l ,  M 3 = 0 . 6 5 ,  M 4 = 3 ,  
(20) 

3//5 = 4.64, M6 = 15.03, My = 33.43, Ms = 100.27.  

Depend ing  on whether  M o - +  M4 or M o - +  M6 or Mo--+ Ms is given, the worker  

will deduce  (in cor responding  order)  that  

a(w) = -0 .01373  - 0.04226w + 0.01373w 2 , (21a) 

a(w) = - 0 . 0 1 9 8 0  - 0.02187w + 0.02594w 2 - 0.009441w 3 , (21b) 

a(w) = - 0 . 0 1 9 8 0  - 0.02187w + 0.02594w 2 - 
- 0.009441w 3 - 9.0 10-8w 4 . (21c) 

Small differences be tween coefficients in 21(b, c) and in the exact mode l  (18')  are 

due to roundof f  errors.  
We  have shown that  if a worker  unaware  of  the pdf  makes  use of  only the 

momen t s  M0 ~ m 4 ,  he/she  obtains a mode l  (Equa t ion  (21a)) quite distinct f rom 

the exact mode l  (Equa t ion  (18')) .  H o w  good  or  bad  is the approximat ion?  Figure 

1 shows that  the difference be tween  the exact and the approximate  models  is quite 

large. The  deterministic term a(w) normal ly  has the effect of  re turning the velocity 

towards  its condit ional  mean  value. The  approximate  mode l  with four  or  more  

terms does have that  proper ty ,  but  with only three terms it does not.  In  the latter 

case, a(w) drives a large positive velocity even larger.  

We  calculated the spread of  particles released at z~ = 500 m, into a domain  
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Fig. 2. The predicted standard deviation by both the exact model  and the three- term approximation 
model  in homogeneous  non-Gaussian turbulence. Perfect reflection was applied at both top and bot tom 
boundaries.  5,000 particles were released at zs = 500 m with initial velocity drawn from the Eulerian 

velocity distribution. In calculation, At = 0.01"r. 

bounded by perfect reflection at z = (0, 1000) m, using a time step 0.01~'. Figure 
2 compares the calculated standard deviation of the particle position from the 
exact and the approximate model (21a) over the range of (0, 2~-). For a short flight 
time, the approximate model gives a satisfactory result due to memory of correct 
release statistics, but for t > % it is quite wrong because the particles' flights are 
governed by an incorrect conditional mean acceleration a(w). 

Figure 3 shows that there arises a violation of the w.m.c., with regard to both 
position and velocity, when the moments approximation model is truncated at 
K = 2 (i.e., four moments are used, and we retain terms to order w 2 in a(w)). In 
Figure 3(a), we show that violation of the w.m.c, in position worsens as flight 
time t of the particles increases. For t = % the degree of violation is not serious 
(due to the correct release statistics), but for later times, it becomes unacceptable. 
Figure 3(b), on the other hand, indicates that the pdf of the particle velocity, 
calculated from the moments approximation model, decays with respect to the 
initial pdf; in particular, at large w the probability density grows with time. This 
is not surprising in view of the expansion used for a(w): the three-term approxi- 
mation forces large w to be even larger. 

Of course, the worker using approximation (21a) does not know the correct pdf 
(16), so would have no basis for considering the velocity pdf that results from his 
model (21a) as "wrong" by comparison with (16). In fact, the moments approxi- 
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mation for a(w), in conjunction wlth other assumptions made, may (under suitable 
restrictions) imply a pdf. In the present case, however (homogeneous, four speci- 
fied moments, second-order polynomial), such a pdf is not implied (see Appendix). 
Particles in the present simulation were released with a random velocity from the 
"exact" pdf (16), but since the underlying moments approximation model does 
not imply a pdf, we should not be surprised to see that at later times, there is no 
pdf approaching (16). 

3.3. INHOMOGENEOUS NON-OAUSSIAN TURBULENCE 

The Eulerian probability density function for vertical velocity in the convective 
boundary layer (CBL) is commonly modelled (e.g., Baerentsen and Berkowiez, 
1984) as bi-Gaussian, 

pa(w, z) - A [ 
~/~O-A exp L 

(w-wA)=l+ B [ j  expL 
(w + W B)2] 

2O-2 J '  

(22) 

where A(B) is the fractional area occupied by thermals (downdrafls), WA(WB) the 
mean velocity within the thermals (downdrafts) and O-A(O-B) the standard deviation 
of the fluctuating vertical velocity in thermals (downdrafls). As in Due t  al. (1994), 
we choose to relate the parameters of (22) to the unconditional moments by 

A = 0.4, B = 0 . 6  
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Fig. 3. (a) The evolution of the concentration distribution from an initially well-mixed profile (C = 
1) predicted by the three term approximate model. (b) The probability density distribution of vertical 

velocity at t* = t/.r = 100, calculated from both the exact model and three-term approximation model. 
The solid line is the probability density function at t = 0. In the calculation, 50,000 particles were 
released with the "well-mixed" initial condition. In calculating the concentration distribution, perfect 
reflection was employed at both boundaries. In calculating the evolution of the pdf, no reflection 

scheme was used. 

= 2_ ~j1/3 (23) WA = M 1/3, WB 31~,3 , 

O-A = (M2 - 0.281M2/3) u2, o 'a  = (M2 - 0.927M~/3) 1/2 �9 

W e  a s s u m e  S = 0.65 and  K = 3.0,  typ ica l  o f  v a l u e s  o b s e r v e d  in t he  C B L .  In  

d e r i v i n g  a p p r o x i m a t e  m o d e l s ,  we  n e e d  h i g h e r  v e l o c i t y  m o m e n t s .  F r o m  (22),  (23) 

we  ge t  

M5 = 4 .627M~ '2, M6 = 15 .662M~,  M 7 = 3 5 . 9 9 2 M  7/2, 

Ms  = 116 .438M 4 . (24) 

F r o m  (7),  (8),  (22) we  o b t a i n  t h e  e x a c t  m o d e l  e q u a t i o n s  

dw = - ( M 2 / 7 ) Q  + ~bdt + x / 2 M 2  d~:,  (25) 

po(w) 

w h e r e  
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+ I O0"-- A ~1- W(W -- WA) Off A "l- 1,~ OWA] pA nt- 

O'A OZ O" A OZ OZ J 

+ _ _ n  

Oo'B + w(w + wB) OcrB OwB_] 26) 
- -  W p B  , 

+ OrB OZ O-B OZ OZ J 

Q = (w - WA)ApA + (W + wB)BpB (27) 
0 -2  ' 

1 [ ( w -  WA)2~ (28) 
P A  --  ~ 0  rA e x p  - 2--T A j ,  

1 (29) p e = / x = -  exp[  (W-~-WB)2~ 
v z~ro'B t_ 2o-B J 

Again, the approximate model equation depends on how many terms in the 
expansion (9) are used. If three terms are used, 

b 2 
Co = -0 .206  ~ + 0.567 dM2 

dz ' 

C1 = -0"63462 + 0"206(dM2/dz)M~/2, (30) 

M2 

C2 = (0"206b2/M~/2) + 0.433(dMJdz) 

M2 

Using four terms, 

0.279b 2 dM2 
Co = ~ 0 . 5 5 0 - - ,  

M 1/2 dz 

-0 .385b 2 + 0.265(dM2/dz)M~/2 
C 1 = 

M2 
C2 = (0"353b2/M~/2) + 0.4681,dM2/dz) " 

M2 

-0 .115b 2 - O.027(dM2/dz)M 1/2 
C 3 = 

(31) 

while with five terms, 

- O. 293 b 2 dM2 
Co - + 0 . 5 7 9 -  

M~/2 dz 
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-0.418b 2 + 0.330(dM2/dz)M~2/2 
C 1 ~ 

M2 

C2 = (0"381bZlM1/2) + 0.412(dM2/dz) , (32) 

M2 

-0.097b z - O.062(dMz/dz)M~/2 
C3 = 

C4 = (-O'O08b2/M~/2) + O.O16(dM2/dz) 

We computed the dispersion of tracer particles in a flow in which the profile of 
variance was specified as 

M2(z) [0.01 z 2/3 1 -  z ,2/3_, 
= w  2 + ( ~ . )  ( ~ / / )  J (33) 

where w, is the scale of vertical velocity, taken to be 1 m/s. This profile (33) is in 
qualitative agreement with experimental data in the CBL (Sawford and Guest, 
1987; Stull, 1988). The Lagrangian decorrelation time scale was set to 

2.5M2Zi 
- ( 3 4 )  

3 
Ws 

Using (34) is equivalent to taking 

b = ( 3 5 )  

Simulations were performed for point (z, = 500 m) and well-mixed releases, with 
a timestep 0.01r. The height of the boundary layer Z~ was 1000 m. 

Figure 4 shows that the approximate models satisfactorily predict the standard 
deviation of the dispersing particle position, but not the mean height. The five- 
term approximation is not, however, superior to the four-term one. 

Figure 5 shows the mean density distribution (C) at t = 2~'max (where rmax is 
the Lagrangian time scale at the mid-point of the computational domain) of 
particles released from a well-mixed initial state (C = 1). The four-term approxi- 
mation satisfies the w.m.c. (within statistical error), but the three- and five-term 
approximations do not (note the accumulation of particles at the middle of the 
domain and the deficit near the boundaries). This suggests that using more terms 
does not necessarily improve the approximate model. At first glance, this seems 
strange. However, common sense suggests that the expansion for a(w, z) terminat- 
ing at the term CKw 1r requires that K be odd and that Cx < 0; otherwise a(w, z) 
can drive the magnitude of a large velocity even larger. For example, if K = 4, 
then a positive (negative) C4 will force a positive (negative) velocity of large 
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Fig. 4. (a) Comparison of the calculated standard deviation by the exact model and the approximate 
models in inhomogeneous non-Gaussian turbulence. The source height was zs = 500 m. rmax is the 
maximum Lagrangian time scale in the computational domain. (b) Comparison of the calculated mean 

height of the dispersing particles by the exact model and approximate LS models. 
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Fig. 5. The evolution of a well-mixed initial concentration profile in inhomogeneous non-Gaussian 
turbulence. The profiles are at t = 2rmax. In calculation, 50,000 particles were released. 

magnitude even farther away from its equilibrium value, w = 0. In the homogene-  
ous case we studied in the last subsection, this problem was not serious because 
the coefficient C4 was extremely small. In strongly inhomogeneous turbulence, C4 
may be numerically large due to the velocity variance gradient term, so that 
truncating at the C4w 4 term could be problematical. 

The above analysis suggests that when using the moments approximation, one 
should truncate the expansion for a(w) (in powers w ~) at an odd power (k ~< K, 
K odd), 

4o Forming an Optimal Lagrangian Model from Partial Information 
on Eulerian Velocity Statistics 

Rather than assuming a fully-known pdf (whose specification was not, however, 
available for the purpose of exploiting the Kaplan-Dinar method),  we shall now 
examine the situation where an LS model is to be built strictly from partial 
information - so that one cannot, even in principle, appeal to an "exact" model 
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as a criterion. Specifically, we shall assume that only the N lowest-order moments 
are known, and compare the following two models: 

(i) the modified Kaplan-Dinar moments approximation model; 
(ii) the well-mixed model that corresponds to the "maximum missing information" 

pdf (not the true pdf, which is unknown) implied by the given moments. 

Model (i) is by now familiar: all information given about the Eulerian velocity is 
used to determine the coefficient C's of a truncated expansion for a(w,  z) .  Model 
(ii) begs explanation. 

When one must form a pdf on the basis of partial information about a random 
variable, the scientifically objective choice is the pdf which is "maximally noncom- 
mittal with regard to missing information" (Jaynes, 1957). This objectivity is 
achieved by choosing the pdf which maximizes the functional 

f 
~c 

H ( p )  = - p (w)  ln[p(w)] dw 
- - 2  

under the given constraints (this inference principle is well-known in statistics, and 
has already been applied in the context of LS models by D u e t  al., 1994). Having 
formed this "mmi" (maximum missing information) pdf, one may then (in prin- 
ciple, though not necessarily easily) derive the corresponding well-mixed LS 
model. 

4.1. O P T I M A L  T R A J E C T O R Y  M O D E L  F R O M  N = 2 G I V E N  M O M E N T S  

Suppose we are given the mean and variance of the Eulerian velocity. We are not 
entitled to assume that the Eulerian pdf is Gaussian. 

The mini pdf in this case (not the actual) pdf, which remains unknown) is 
Gaussian ( D u e t  al., 1994). Therefore the LS model obtained from the mini 
principle and the w.m.c, is simply the model (14) given earlier (Section 3.1). 

If we employ the moments approximation in this case, we are limited to the 
expansion: 

a(w,  z)  = Co + C lw  , 

and we obtain 

(36) 

Clearly this model is quite different from (14) or (15). We suspect that this is not 
a well-mixed model in the inhomogeneous case. We have been unable to prove 
this point. But in random flight experiments (using the inhomogeneous turbulence 
profiles of Section 3), the initial well-mixed distribution was retained much more 
closely by the mini model (14) than by the moments approximation model (36), 

b 2 
Co = dM2, C1 - (37) 

dz 2M2' 
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Fig. 6. The evolution of a well-mixed initial concentration profile (C = 1) in inhomogeneous turbu- 
lence when only two velocity moments are specified. The profiles are at t = 5~'ma• In calculation, 

50,000 particles were released. 

(37), as shown in Figure 6. This must be qualified by stating that: (a), we did not 
know the correct initial velocity statistics for the moments approximation model; 
and (b), implementing perfect reflection at the boundaries implied an unavoidable 
(though arguably minor) violation of the w.m.c. (see Wilson and Flesch, 1993) by 
both models. 

In this case, our exploitation of the mmi principle to build an LS model from 
partial information has yielded a more-rigorous model than does the moments 
approximation (36). 

4.2. O P T I M A L  T R A J E C T O R Y  M O D E L  F R O M  N = 4 G I V E N  M O M E N T S  

In this case~ given the four lowest-order moment  constraints, the mmi pdf is (Du 
et al., 1994) 

4 
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where the Ak(z)s are determined by the four known moments and the normaliz- 
ation condition. Following Thomson (1987), the corresponding well-mixed LS 
model is 

4 

a(w, z) = - M~ ~, kAk(z)wk_ ~ + 
T k = l  

4 

+[~[k=o dAk(~Z) . (38) 

We refer to this as the mmi model. 
The two methods under consideration use exactly the same information about 

the Eulerian velocity distribution, but proceed on different routes to obtain the 
LS model equation. Which is better? To answer this, we simulated dispersion 
from a continuous point source at height Zs = 0.24Zi in the CBL (of depth Zi) ,  
adopting the velocity statistics M2(z),  M3(z) and ~'(z) that were previously used 
for the same purpose by Luhar and Britter (1989), plus a supplementary (and 
justified; see Due t  al., 1994) assumption that M4 = 3.0M 2. 

Figure 7" compares predictions of the two models for the contours of cross-wind 
integrated concentration (CWIC), and may be compared with the corresponding 
contours of the convection tank experiment of Willis and Deardorff (1978; their 
Figure 4). The mmi model seems superior to the modified Kaplan-Dinar model. 
In Figure 8 we compare predictions of the alongwind profile of ground-level 
CWlC. Again, the mini model gives the better prediction. In particular, at (what 
should be) suitably large downwind distances ( X -  4), the CWIC predicted by the 
modified Kaplan-Dinar model is not well mixed. 

5. Conclusion 

From a practical viewpoint, the concept of an "exact" Eulerian velocity pdf is 
absurd (as any experimentalist would confirm), and the Kaplan-Dinar aspiration 
to build a Lagrangian stochastic model from realistic, partial knowledge of the 
turbulence (a few low-order velocity moments) is appropriate. 

However, what is involved here is a statistical inference problem, and the 
Kaplan-Dinar approach may not be the best one. We have shown that a danger 
of the Kaplan-Dinar approach is that one may obtain a random flight algorithm 
that fails the well-mixed condition (does not keep an initially well-mixed tracer 
well-mixed). On the basis of our findings, we suggest that a better alternative to 
the Kaplan-Dinar approximation is to construct from the known velocity statistics 
the maximum missing information probability density function: then by the usual 
procedure (Thomson, 1987) derive the corresponding well-mixed trajectory model. 
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Appendix. Eulerian velocity pdf implied by the moments approximation 

Thomson (1987) has shown that the Eulerian velocity pdf pa(w, z) must be a 
solution of the Fokker-Planck equation that corresponds to (any) suitable model 
for the evolution of particle velocity (the well-mixed condition referred to earlier). 
We note that if expansion (9) for the model coefficient a(w, z) is substituted into 
the FP equation, one may obtain an Eulerian pdf that is derived consistently from 
the principal assumptions made (Markovian evolution; model must be well-mixed; 
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coefficient b independent of w; power series expansion for a(w, z)). In the case 
of homogeneous turbulence, the solution to the FP equation is: 

pa(w) = expI~ (C. + Cow + Cl w2 + CK )] . . . . .  w K+I . (A1) 
2 K + I  

If K is even, this solution (Equation (A1)) is unbounded, and so not apdf .  
On the other hand, if K is odd, the solution (Equation (A1)) is of the form of 

an mini (maximum missing information) pdf (for a detailed description of the mini 
pdf, the reader is referred to D u e t  al., 1994). However, determining the coef- 
ficients Co, C1..  �9 CK of the modified Kaplan-Dinar expansion (and of the above 
pdf) requires knowledge of 2K velocity moments, 6 whereas the pdf (A1) is exactly 
the mini pdf corresponding to a smaller number (K) of given velocity moments. 
C. can be determined by the normalization condition or any one of the given 
moments. 

It is seen, then, that the modified KD model, in effect, may imply a pdf. 
Presumably the principle of consistency of approximation requires that the part- 

6 The original Kaplan-Dinar approach requires ( 2 K -  1) moments plus an assumption (concerning 
C1) in the one-dimensional case, 
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ic les  o f  a m o d i f i e d  K D  s i m u l a t i o n  be  r e l e a s e d  w i t h  a r a n d o m  v e l o c i t y  f r o m  tha t  

pdf~ 
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