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Abstract. This work re-examines and further develops an analytical solution for the deposition
swath of heavy particles released in the atmosphere from an elevated source over uniform terrain,
correcting the particle diffusivity for the crossing trajectory effect. The revised (approximate) ana-
lytical solution proves to be accurate within 20% over a wide range of micrometeorological con-
ditions and particle size, despite its neglect of the turbulence component of the deposition flux.
It compares very satisfactorily with experimental data and with the simulations of a Lagrangian
stochastic model, provided the variable U(H)/wg ≤7 (ratio of the mean horizontal wind speed at
source height to the particle settling velocity). In this domain of validity, simple formulae relating
the statistics of the deposition swath to U(H)/wg are derived.

Keywords: Analytical solution, Crossing trajectory effect, Diffusion, Heavy particle deposi-
tion, Lagrangian stochastic simulations, Turbulent deposition.

1. Introduction

In the context of particle dispersion in the atmosphere, numerical modelling is
a powerful tool of investigation. However, the price of the flexibility it offers is
a loss of physical transparency. An analytical solution offers two major advan-
tages over numerical treatment: first, it gives direct insight to the parameters
controlling dispersion and the related physics. Secondly, it is rapid and easy to
use, whereas numerical simulation may be difficult. Thus, numerical and ana-
lytical treatments may be regarded as complementary.

Developing the work of Rounds (1955), Godson (1958) presented an analyt-
ical solution for the concentration field and the deposition swath of heavy par-
ticles released from an elevated line source over uniform terrain. The solution
is founded on various assumptions, of which the strongest is to approximate
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turbulent convection as a diffusion process, and with the heavy particle diffu-
sivity equated with the eddy viscosity that is implicit in the logarithmic wind
profile. Here we further develop the Rounds–Godson solution, modifying it to
account for the crossing trajectory effect (Csanady, 1963). As we will show,
simple adjustments to Godson’s solution significantly improve its performance,
and ensure satisfactory analytical results over a wide range of particle sizes and
meteorological conditions. Our criteria for performance of the analytical solu-
tion include both experimental data (Hage, 1961; Walker, 1965) and numerical
simulations using a Lagrangian stochastic (LS) model. The LS model is known
(Wilson, 2000) to be fairly accurate for heavy particle dispersion over uniform
terrain.

2. The Analytical Solution

2.1. The Rounds–Godson solution

In a steady-state regime, if one neglects streamwise turbulence and invokes gra-
dient diffusion closure for the turbulent fluxes, then heavy particle transport
and dispersion in a horizontally uniform flow can be described by the follow-
ing mass conservation equation

U
∂χ

∂x
= ∂

∂z

(
K
∂χ

∂x
+wg χ

)
, (1)

where U = U(z) is the mean horizontal velocity, χ = χ(x, z) is the particle
concentration, K =K(z) is the particle diffusivity and wg is the gravitational
settling velocity of particles, namely the equilibrium velocity of a heavy par-
ticle falling in a static fluid. If the particle is spherical and small enough that
Stokes’ law holds, then wg=g τp , where g is the gravitational acceleration and
τp =ρd2/18µ is the particle’s acceleration time scale, ρ being the density of
the particle, d its diameter, and µ the dynamic viscosity of the air. Here and
henceforth, equations and variables are given (with a few obvious exceptions)
in non-dimensional form, the source height H and the friction velocity u∗ be-
ing taken as length and velocity scales.

Rounds (1955) derives an approximate solution of Equation (1) for an ele-
vated line source releasing particles into a neutral (non-stratified) atmosphere.
Godson (1958) generalizes Round’s solution to the case of a thermally strat-
ified atmosphere. The forms used for the profiles of vertical diffusivity K(z)

and horizontal wind speed U(z) are derived from the (now obsolete, yet evi-
dently useful) formulations suggested by Deacon (1949):
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U = 1
kv (1−ν)

[(
z

z0

)1−ν
−1

]
, (2)

K=kv z1−ν
0 zν, (3)

where kv is the von Karman constant and z0 is the roughness length (defined
as the height where the mean horizontal wind speed vanishes); ν is a stability
parameter that relates to the Monin–Obukhov length Lmo as

ν=1− ln(ϕm(z/Lmo))

ln(z/z0)
(4)

where ϕm is the Monin–Obukhov universal function for momentum; note that
ν >1 for unstable conditions, ν=1 at neutral stability, and ν <1 for stable con-
ditions. The wind velocity profile (Equation (2)) satisfies U(z0)=0 and tends to
the logarithmic form U = (1/kv) ln(z/z0) under neutral conditions, when ν→1.
No closed form solution to the heavy particle advection–diffusion Equation (1)
can be achieved with the wind and diffusivity parameterizations (2)–(3), as such.
However, the problem can be solved if the profiles (2)–(3) are approximated in
the following manner:

U =q
(
z

z0

)α
, (5)

K= ε kv z, (6)

where

ε= 2
1+ν z

1−ν
0 , (7)

q= 1
kv α

(2z0)
α+ν−1, (8)

1+α=γ =




1−z1−ν
0

1
2−v −z1−ν

0
(ν �=1) (9)

ln(z0)

1+ln(z0)
(ν=1) (10)

The parameters ε, α, and q are determined by requiring that (in shorthand nota-
tion) ∫ 1

0
(2)dz=

∫ 1

0
(5)dz, (11)

d(2)
dz

∣∣∣∣
z=1/2

= d(5)
dz

∣∣∣∣
z=1/2

, (12)

∫ 1

0
(3)dz=

∫ 1

0
(6)dz. (13)
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Note that z is dimensionless, so that z= 1 is the source height. The bottom
boundary of the domain (‘the ground’) is placed at z= 0; it is assumed per-
fectly absorbing, and the diffusive flux to ground is neglected. Thus the lower
boundary condition is specified by the deposition flux:

D(x)=wg χ(x, z=0), (14)

or equivalently[
K

(
∂χ

∂z

)]
z=0

=0. (15)

Based on the boundary condition (14)–(15) and on the profiles (5)–(6), a solu-
tion to Equation (1) is achieved. By application of Equation (14), the flux of
particles to the ground normalized by the rate of emission Q is:

D(x)

Q
= 1
A
(p)

exp
(

−A
x

)(
A

x

)1+p
, (16)

where

p= wg

ε kv γ
, (17)

A= U(H)

ε kv γ 2
, (18)

and where 
(p) is the Gamma function of parameter p: 
(p)= ∫ ∞
0 tp−1e−t dt .

According to this solution, the deposition swath has the distribution of a Gamma
function relative to the variable A/x, and with shape parameter (p+2).

However, the solution of Godson actually omits an important feature of
heavy particle dispersion, the ‘Crossing Trajectory Effect’ (henceforth called
CTE) first identified by Csanady (1963). In the following paragraphs, after
briefly recalling the physics underlying the CTE, a simple adjustment to the
analytical solution, which allows us to account for the CTE, will be presented.

2.2. Accounting for the crossing trajectory effect (CTE)

By definition, velocity statistics of passive tracer particles are strictly identical
to the velocity statistics of particles of the carrying fluid. However, heavy par-
ticles respond to gravity and to some extent fall out through the fluid, so as a
result, the sample of fluid velocities ‘seen’ by heavy particles is not the same
as the one seen by passive tracer particles. In other words, the velocity sta-
tistics of the driving fluid surrounding a particle differ, depending on whether
this particle is passive or otherwise. In particular, the correlation time scale,
which is a measure of the fluid velocity persistence along a particle trajectory,
is altered. In the case of passive tracer particles, velocity de-correlation stems
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Figure 1. Normalized deposition rate of heavy particles (settling velocity wg =0.19 m s−1), re-
leased 7.4 m above ground, in a stable atmosphere (u∗ =0.18 m s−1, z0 =0.016 m,Lmo =16 m).
Comparison between experimental data (dots) and analytical solutions in two cases: the solu-
tion of Godson, when the CTE is not included (dashed line), and the revised analytical solu-
tion, when the CTE correction is included (solid line).

only from eddy decay in time. Because heavy particles ‘fall out’ through eddies,
the fluid velocity along their trajectories is additionally space-decorrelated. In
consequence the velocity autocorrelation function for heavy particles RHP(ε),
defined as Ri,jHP = vi(t)vj (t+ ε)/(σviσvj ), is expected to be smaller than its pas-
sive tracer particle counterpart RL(ε) when ε (the time of separation) is much
larger than the particle inertial time scale τp (when ε� τp, then RHP(ε)≈1 and
RHP(ε)≥RL(ε); this is a consequence of inertia). The time scale for the disper-
sion of heavy particles (henceforth called THP = ∫ ∞

0 RHP(ε)dε) is accordingly
reduced relative to the integral time scale TL = ∫ ∞

0 RL(ε)dε. Figure 1 illustrates
how critical the CTE can be in the dispersion of heavy particles; it presents
experimental data for deposition, along with the corresponding analytical solu-
tion in two situations: when the CTE is accounted for (by the method described
below), and when it is not (Godson’s solution). Clearly, in this example, the CTE
is significant, and accounting for it offers a major improvement in the analytical
solution. We therefore propose below a simple adjustment to the eddy diffusivity,
allowing CTE to be taken into consideration in the analytical solution.

To reconcile the eddy diffusion treatment with Taylor’s (1921) Lagrangian treat-
ment, one must require that the eddy diffusivity of tracer particlesKL satisfies1

KL =σ 2
w

∫ ∞

0
RL(ε)dε. (19)

1 In the interests of clarity, in the remainder of this section (only) we attach the subscript HP (or L) to the
diffusivity for heavy particles (or tracer particles).
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In the far-field limit, when the travel time is much larger than TL, the particle
diffusivity is linearly related to TL:

KL,∞ =σ 2
wTL. (20)

This result applies for the motion of passive tracer particles in the far-field of
a source and in homogeneous turbulence. We will consider it as a pattern for
the heuristic modification of heavy particle diffusivity (KHP) in inhomogeneous
turbulence, by writing

KHP,∞ =σ 2
wTHP. (21)

Sawford and Guest (1991), following Csanady (1963), suggest that THP be
parameterized in a heuristic fashion as

THP = TL√
1+

(
β
wg
σw

)2
, (22)

where σw is the fluid vertical velocity variance and β=σw TL/LE is an empiri-
cal parameter relating Eulerian and Lagrangian scales. By combining Equations
(21) and (22), the heavy particle diffusivity in the far-field is

KHP,∞ =KL,∞

[
1+

(
β
wg

σw

)2
]−1/2

. (23)

We justify this adjustment for KHP,∞ by the evidence (see Figure 1) that it im-
proves the agreement of the analytical solution with observations, and remind
the reader that dispersion of particles in the near-field is outside the scope of
this article (discussion on this point follows in Section 3.1). Therefore, we drop
the far-field subscript (∞), on the understanding that the analytical solution is
to be applied in the far-field of the source. As Godson showed, Equation (16)
applies for any generalization of the eddy diffusivity, provided it can be writ-
ten in the form (6); in particular, ε should not be a function of height. This
requirement can be accommodated by writing

KHP

KL
(z)≈ KHP

KL
(H)=

[
1+

(
β

wg

σw(H)

)2
]−1/2

. (24)

Then the parameter ε becomes

ε=ϕ(ν, z0)ψ

(
β wg

σw(H)

)
, (25)

where ϕ(ν, z0) is the adjustment made by Godson (Equation (7)) to generalize
the diffusivity to stratified atmospheres, and ψ

(
β wg
σw(H)

)
is the additional cor-

rection for heavy particle diffusivity, presented in Equation (24). With this new
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formulation for ε, the analytical solution (16) accounts approximately for both
thermal stratification and for the crossing-trajectory effect.

3. Discussion and Test of the Analytical Solution

3.1. On the assumption of ‘far-field’ dispersion

The formulation that is proposed for the eddy diffusivity K (Equation (6)),
and in turn the solution (16) as a whole, stands on the assumption that
particles reach the ‘far-field’ of the source, i.e. that particle travel time is
much larger than the velocity autocorrelation time scale (THP). Indeed, only
by invoking a dependency of the eddy diffusivity on time (or distance) from
the source can the advection–diffusion equation be forced to describe the
near-field (eg. Deardorff, 1978). The ‘far-field’ assumption is however rea-
sonable. Figure 2 shows the computed mean number (N ) of time inter-
vals THP(t) that elapse during a particle’s trajectory from the source to its
point of deposition. Note that turbulence is not homogeneous in the bound-
ary layer, and that THP decreases as the particle approaches the ground.
Therefore, THP is not constant along a particle’s trajectory. Were turbulence
homogeneous (and therefore THP constant), N would simply equal the ratio
t/THP of the travel time of a particle to the velocity autocorrelation time
scale. The mean N may be loosely interpreted as the number of indepen-
dent velocity ‘choices’ made by a particle along its flight, and one may
consider the far-field to have been reached when N 	 1. We see on Fig-
ure 2 that in standard meteorological conditions (0.1 ≤ u∗ ≤ 0.6 m s−1),N ≥ 7
for particles (wg ≤ 1.3 m s−1) released from a source elevated at H = 0.1 m.
N is larger when the source is higher (not shown), thus the assumption that
particles reach the far-field is reasonable. It may lead to slight quantitative er-
rors, in particular for large particles, but the analytical solution ought to capture
at least the right qualitative behaviour.

3.2. Neglect of turbulent deposition

Gravitational settling is the simplest and most obvious mechanism for deposi-
tion. However, the overall deposition rate may be affected by the fluid veloc-
ity fluctuations, and we will call the resulting contribution to deposition the
‘turbulent deposition’. Brooke and Hanratty (1994) conceptualize the turbu-
lent deposition in terms of three mechanisms: free-flight, turbophoresis, and
turbulent diffusion. The total turbulent deposition flux is the sum of these
three components, the importance of each one varying with the distance to
ground.
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Figure 2. Estimation of the number N of independent velocity choices made by a particle
along its trajectory to its point of deposition, as a function of particle gravitational settling
velocity (wg). N has been computed with the LS model as the average number of elapsed
intervals THP during the trajectory to deposition. The simulation is performed in a neutrally
stratified atmosphere, with source height H = 0.1 m, z0 = 0.01 m and u∗ = 0.1 m s−1 (dashed
line) or u∗ =0.6 m s−1 (solid line).

The solution of Rounds–Godson (16) is built on the assumption that gravita-
tional settling is the only mechanism of deposition, as seen in Equations (14)–(15).
To account for turbulent deposition, the lower boundary condition could appro-
priately be written

D(x, zb)=Vdep χ(x, zb), (26)

where zb (≥ z0) denotes the top of a shallow constant flux layer. As Slinn
(1982) suggests, the deposition velocity Vdep is the superimposition of the grav-
itational settling velocity (wg) and a component (Vturb) ascribable to turbulent
deposition:

Vdep =wg + Vturb. (27)

McCoy and Hanratty (1977) summarized the experimental results for turbulent
deposition velocity collected by Friedlander and Johnstone (1957), Schwediman
and Postma (1961), Wells and Chamberlin (1967), Farmer (1969), Schmel
(1971), Forney and Spielman (1974) and Liu and Agarwal (1974). From this
extensive data base, McCoy and Hanratty proposed the parameterization

Vturb =
{

3.25×10−4 τ 2
p 0.2<τp <22.9

0.17, τp≥22.9
(28)

where Vturb and τp are non-dimensionalized with friction velocity and kine-
matic viscosity as scales. The case τp≤0.2 is not relevant to this work, for the
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Figure 3. Fractional contribution of turbulent deposition (Vturbχ ) to total deposition ((Vturb +
wg)χ ), as a function of particle gravitational settling velocity (wg =τp g), when u∗ =0.6 m s−1

(solid line), u∗ = 0.3 m s−1 (dashed line) and u∗ = 0.1 m s−1 (dotted line). Vturb is calculated
according to Equation (28).

corresponding particles are submicronic and behave virtually like passive fluid
particles.

Figure 3 presents the ratio Vturb/(Vturb +wg) as a function of wg, where
wg = g τp and Vturb is calculated according to Equation (28); evidently tur-
bulent deposition can represent a significant component of total deposition.
It was necessary therefore to assess the error induced by not accounting
for turbulent deposition in the analytical solution of Rounds–Godson (i.e.
Equation (16), which assumes Equations (14)–(15) at the lower boundary). This
we did by comparing the analytical solution against finite difference numeri-
cal solutions of Equation (1) supplemented by the improved lower boundary
condition (Equations (26)–(28)). Details are given in Appendix A. The results
are shown in Figure 4, for a neutrally stratified atmosphere, and where u∗ =
0.35 m s−1,H =1m, z0 =0.01m. The small discrepancy between the numerical
and the analytical solutions where they both assume the same (simpler) lower
boundary condition (Equations (14)–(15)) shows that discretization errors in the
numerical resolution are negligible. The numerical solution built with the lower
boundary condition (26) is clearly distinguishable from the analytical solu-
tion; in particular, the peak deposition rate is noticeably stronger (i.e. ignoring
turbulent deposition causes a reduced deposition peak). The most significant
discrepancy between the Rounds–Godson solution and the numerical solution
being the magnitude of the deposition peak, we present in Figure 5 the frac-
tional error E in this quantity (relative to the numerical solution taken as truth)
as a function of u∗, τp. It can be seen that |E|≥20% when u∗ ≥0.3 m s−1 and
wg≤8 ×10−2 m s−1. In this domain of the wg−u∗ space, we consider that the
analytical solution is unreliable.
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Figure 4. Deposition swath of heavy particles (wg = 0.066 m s−1) released at H = 1 m in a
neutrally stratified atmosphere, where u∗ = 0.35 m s−1 and z0 = 0.01 m. The solid curve and
the short-dashed curve represent respectively the analytical solution and the numerical solution
of the advection–diffusion Equation (1) when turbulent deposition is ignored (lower boundary
condition (14–15)). The long-dashed curve shows the numerical solution when turbulent depo-
sition is included (lower boundary condition (26)).

3.3. Test against experimental results and Lagrangian stochastic
simulations

Testing the analytical solution by comparing the deposition swath with its
experimental or numerical counterpart can become confusing, especially when
the number of comparisons is large. We therefore focus on four variables
that characterize the deposition swath: the position (xpeak) and magnitude
(D/Q)peak of the deposition peak, the standard deviation (σx) of the deposition
location, and the distance from the source over which 90% of the particles will
have been deposited (x90%). The analytical solution (16) implies that

xpeak = A

1+p, (29)

(
D

Q

)
peak

= [(1+p)/e]1+p

A
(p)
, (30)

σx = A

p−1

√
1

p−2
, (31)
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Figure 5. Fractional error in the approximate analytical solution, relative to a numerical solu-
tion of the advection–diffusion equation (Equation (1)) with the more realistic lower boundary
condition (26–28). The other boundary conditions and the parameterizations for U and K are
the same as assumed in the analytical treatment, and the atmosphere is taken as neutrally
stratified. We found that the height of the source does not affect the distribution of the error
in the wg −u∗ space.

where σx is defined analytically only for p∈ [2;∞]. Finally, the recovered frac-
tion is related to the distance from the source by:

R(x)=1− 
A/x(p)


(p)
, (32)

where 
A/x(p) is the incomplete Gamma function of parameter p , defined as


A/x(p)=
∫ A/x

0
e−t t−1+pdt. (33)

The relationship R(x) can be inverted numerically in order to obtain the recov-
ery distance as a function of the corresponding recovered fraction.

We firstly test the refined analytical solution against the experimental data
collected by Hage (1961) and Walker (1965) over a fairly broad range of
micrometeorological conditions (u∗ ∈ [0.18,0.57] m s−1;H/Lmo ∈ [−0.37,0.50];
z0/H ∈ [5.4 × 10−4,5.8 × 10−3];wg/u∗ ∈ [0.25;1.66]). Figures 6 and 7 com-
pare the analytical solutions for the position and the magnitude of the peak
of the deposition swath, with their experimental counterparts. There is some
uncertainty in the experimental values, for only ‘samples’ (discontinuous val-
ues) of the deposition swath are available. Thus, values for the peak location
are interpolated; likewise, the values used for the magnitude of the peak are at
best equal to the real values, and otherwise underestimations. In spite of the
uncertainty inherent in the experimental data, one observes a very good match
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Figure 6. Comparison between the experimental value and the analytical solution for the po-
sition of the peak along the deposition swath. Conditions: u∗ ∈ [0.18 , 0.57] m s−1; H/Lmo ∈
[−0.37 , 0.50]; z0/H ∈ [5.4×10−4 , 5.8×10−3]; wg/u∗ ∈ [0.25 , 1.66].
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Figure 7. Comparison between the experimental value and the analytical solution for
the normalized peak deposition rate. Conditions: u∗ ∈ [0.18 , 0.57] m s−1; H/Lmo ∈
[−0.37 , 0.50]; z0/H ∈ [5.4×10−4 , 5.8×10−3]; wg/u∗ ∈ [0.25 , 1.66].
NB: Because experimental data are discontinuous along the deposition swath, the peak
experimental value is likely to be an under-evaluation of the actual peak value.

between the theoretical and experimental values. This shows the satisfactory
performance of the analytical solution, at least in the range of particle sizes
used.

In order to test the analytical solution over a wider spectrum of conditions,
we compare analytical results for the four swath statistics (xpeak, (D/Q)peak, σx,

x90%) with corresponding predictions of a first-order LS model (for details
of the model, please see Appendix B). These comparisons are performed
over an extensive range of particle sizes and meteorological conditions (u∗ ∈
[0.1,0.5] m s−1,H/Lmo ∈ {−0.4;0.4},wg/u∗ ∈ [0.02,52.68], and the results are
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presented in Figures 8a–d. Each statistic (xpeak, (D/Q)peak, σx or x90%) is plot-
ted as a function of U(H)/wg, resulting in a remarkably simple organization of
the data, in both of the two (quite extreme) test situations of thermal stratifica-
tion (H/Lmo =0.4 or H/Lmo =−0.4). As far as xpeak is concerned (Figure 8a),
a discrepancy between the analytical and the LS model solutions becomes
noticeable in the stable case for U(H)/wg >10. For (D/Q)peak (Figure 8b), a
growing discrepancy arises beyond U(H)/wg ≈ 30, in both cases of stratifica-
tion. The graphic presenting σx(U(H)/wg) – Figure (8c) – is fairly incomplete,
for (σx)analytical has a restricted domain of definition, as is clear by inspection
of Equation (31), and furthermore (σx)LS could not be computed with the LS
model for large U(H)/wg; in effect, under such conditions, a fraction of the
particles released are deposited at a virtually infinite distance from the source.
Since these particles are not deposited in the computational domain, the proba-
bility density function of the deposition location is incomplete, explaining why
(σx)LS could not be computed. However, in the restricted domain where σx is
defined and computed, the match between the analytical and LS model results
is very satisfactory in both cases of stratification. Finally, Figure 8d shows how
the analytical solution compares with LS results in terms of the recovery dis-
tance x90%. In a stable atmosphere the match is almost perfect, even for very
large values of U(H)/wg. But in an unstable atmosphere, the analytical and
LS model solutions diverge at U(H)/wg >7. In summary, the match between
the analytical solution and the more sophisticated LS model is excellent for
the four criteria tested, as long as the variable U(H)/wg remains below 7. For
larger values, the analytical solution gives a correct qualitative trend, but fails
quantitatively in some conditions over one or more criteria.

4. An Even Simpler Description Implicit in the Analytical Solution

The value of β is regarded as a constant in the following discussion, and set to
unity, following Raupach (2002). In addition, since the analytical solution has
been shown to be reliable only provided U(H)/wg < 7, the following discus-
sion is restricted to this domain of validity.

According to the analytical formula for the deposition swath (Equation
(16)), A and p are the driving variables. However, their interpretation is
not simple. A dissection of parameters A and p allows us to retrieve the
more fundamental variables wg,u�, ν (the stability parameter) and z0. The
variable U(H)/wg in some sense integrates the influences of those ‘funda-
mental parameters’. In addition, it allows a remarkable collapse of data for
the four deposition swath characteristics. In other words, U(H)/wg prop-
erly accounts for most of the variability when all z0, ν, u� and wg are vari-
able. As an illustration, Figure 9 presents the relationship between xpeak and
U(H)/wg when the friction velocity, thermal stability, gravitational settling
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Figure 8. (a) Comparison between the analytical solution for the location of the deposition
peak (xpeak) and the corresponding LS solution. (b) Comparison between the analytical solu-
tion for the magnitude of the normalized deposition peak ([D/Q]peak) and the corresponding
LS solution. (c) Comparison between the analytical solution for the standard deviation of the
deposition location (σx) and the corresponding LS solution. (d) Comparison between the ana-
lytical solution for the ‘90% recovery distance’ (x90%) and the corresponding LS solution. In
Figures (a), (b), (c) and (d), the solid line and the dots present respectively the analytical and
the LS model solutions in the stable case (H/Lmo = 0.4). The dashed line and the squares
present respectively the analytical and the LS model solutions in the unstable case (H/Lmo =
−0.4). Conditions: u∗ ∈ [0.1 , 0.5] m s−1; wg/u∗ ∈ [0.02 , 52.68]; z0/H =5×10−3; β=1.0.

velocity, and roughness length are all variable (u� ∈ [0.1,0.5] ms−1,H/Lmo ∈
{−0.4;0.4},wg/u� ∈ [0.02,52.68], z0/H ∈ [2 × 10−4,5 × 10−2]). The residual
variability (i.e., the variability not ‘explained’ by U(H)/wg) is seen in the
width of the envelope that encompasses the cloud of dots. It is essentially due
to the variability in z0 when U(H)/wg <7, and it remains small.

From a regression analysis, we derived the following relationships between
the four statistics and U(H)/wg (in all cases, the fraction of variance ex-
plained, R2, is larger than 0.990):

xpeak ∝ [
U(H)/wg

]0.9
, (34)
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Figure 9. Analytical solution of the location of the deposition peak (xpeak) over a wide range
of conditions: u∗ ∈ [0.1 , 0.5] m s−1; wg/u∗ ∈ [0.02 , 52.68]; H/Lmo ∈ [−0.4 , 0.4]; z0/H = [2 ×
10−4 ; 5 × 10−2]; β = 1.0. The ‘dash’ symbols (-) represent the situation z0/H =2×10−4,
whereas the ‘plus’ symbols (+) represent the situation z0/H =5×10−2.(

D

Q

)
peak

∝ [
U(H)/wg

]−11/6
, (35)

x90% ∝ [
U(H)/wg

]5/4
, (36)

σx ∝ [
U(H)/wg

]2
. (37)

Interestingly xpeak is very well approximated by the ballistic impact point, de-
fined as (here in dimensional form)

xbal =
∫ H/wg

0
U(H −wgt) dt, (38)

i.e. xbal is the hypothetical location where a particle would deposit if it did not
experience turbulence along its trajectory.

Equations (34)–(37) show that for growing U(H)/wg, the characteristic
length scales of the deposition swath (i.e. xpeak, σx and x90%) increase, whereas
(D/Q)peak falls. Large U(H)/wg means that mean horizontal convection is
stronger than mean vertical transport, thus a greatly extended deposition swath
is no surprise. Large U(H)/wg also correlates with long time of flight before
deposition, and therefore long action time for turbulence to disperse particles.
This is consistent with the corresponding large spread (large σx and small
(D/Q)peak).

5. Conclusion

A simple adjustment to the Rounds–Godson solution for heavy particle deposition
to account for the CTE has significantly improved that solution, and could be easily
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transposed to the solution for the concentration field given by Rounds (1955). Tests
and analysis of such a corrected solution will be addressed in a future work.

The refined analytical solution for deposition that we propose proves very
skillful when U(H)/wg < 7. The distance of recovery, the location and inten-
sity of the peak are all valuable information in the context of pollution man-
agement, and can all be calculated analytically. Consequently this solution may
be of practical interest, for it is very easily accessible. It is also shown that
the simple variable U(H)/wg exerts a key control on the deposition swath as a
whole, and suffices to give a good estimate of it. However, the analytical solu-
tion is not suitable to handle dispersion over disturbed terrain, or from a com-
plex source distribution; in such cases numerical modelling becomes necessary.

Appendix A: Finite-Difference Solutions of the Advection–Diffusion
Equation

To test the consequence of neglecting turbulent deposition, we solved the
advection–diffusion equation numerically with the contribution of turbulent
deposition retained, using a regular, high-resolution mesh (�x=�z= 0.01H )
covering a computational domain sufficiently long (100H ) to encompass most
of the deposition swath and sufficiently high (50H ) to ensure that the particle
plume did not reach the top of the domain. An upwind difference was used for
∂χ/∂x, and a central difference was used for the vertical derivative (we fol-
lowed the general approach of Patankar, 1980).

The source was placed at the entry boundary (index i=0) of the computational
domain, where we prescribed a condition consistent with a line source, viz:

χ(0, j)
Q

= 1
�zU(j) δj,jH , (A1)

where j indexes gridpoint positions on the height axis and jH identifies the
index coinciding most closely with source height. At the top of the domain

χ

Q
(i, jmax)=0. (A2)

No boundary condition was needed at the downwind (i = imax) boundary,
for due to the absence of diffusion on the x-axis this is a ‘one-way’ coor-
dinate (Patankar, 1980). Parameterizations for U(j) and K(j) were identical
to the ones used in the analytical treatment, i.e. Equations (5)–(6), with ε as
in Equation (25). The numerical scheme was implicit on the z-axis, and the
solution was obtained without iteration, simply by marching downwind on the
x-axis away from the known inflow profile. When applied to the dispersion of
passive tracer, this scheme essentially reproduces the observations of Project
Prairie Grass (Barad, 1958).
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Appendix B: The Lagrangian Stochastic Model

To test the skills of the analytical solution, we performed simulations of par-
ticle dispersion using a first-order LS model. Such a model computes an
ensemble of independent particle trajectories emanating from the source, by
generating for each particle a time series of velocity and integrating it with re-
spect to time. A statistically meaningful, smooth deposition swath is then in-
ferred from a large ensemble of particle paths.

We used the LS model described by Wilson (2000) under the label ‘Iner-
tial Particle (IP) Model’ (Section 2b of his paper). This model relies on two
coupled equations: a Langevin equation gives the velocity of the ‘driving fluid’
that surrounds a heavy particle, and that velocity is imposed in the equation
of motion for the particle’s acceleration. The Langevin equation is adapted to
surface-layer flow statistics and the Lagrangian time scale is corrected for the
crossing trajectory effect following Sawford and Guest (1991); see Appendices
(A, B) of Wilson (2000) for details. In order to best correspond with the ana-
lytical treatment being tested, the LS model was two-dimensional, and particles
were always released at the same elevated location H . The boundary condition
on the ground was also consistent across the two treatments, the ground being
supposed to be a perfectly absorptive surface. Thus in the LS model a particle
trajectory was terminated as soon as it reached the roughness height z0, which
means that the phenomenon of re-suspension was excluded.
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