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Abstract. We report a two-dimensional (alongwind U, vertical w) trajectory-simulation model, consist- 
ent with Thomson’s (1987) well-mixed criteria, that allows for the non-Gaussian turbulence typical of 
flow within a plant canopy. The effect of non-Gaussian turbulence was examined by formulating a 
non-Gaussian U, w joint probability density function (PDF) as the sum of two Gaussian joint-PDFs. 
The resultant PDF reproduced the desired means, variances, skewnesses, and kurtoses, and the correct 
covariance. In prediction of the location of maximum concentration downwind of a line source in 
homogeneous, slightly non-Gaussian turbulence, it proved advantageous to incorporate skewness and 
kurtosis. However, in the case of inhomogeneous, highly non-Gaussian turbulence, the addition of 
skewness and kurtosis in the model resulted in substantially worse agreement with measurements than 
the results of the model using Gaussian PDFs. This may be due to inaccuracy in our PDF formulation. 
Dispersion predictions from the model with Gaussian PDFs were generally not statistically different 
from measurements. These results indicate that a two-dimensional Gaussian trajectory-simulation 
approach is adequate to predict mean concentrations and fluxes resulting from sources within plant 
canopies. 

1. Introduction 

The turbulent dispersion of aerosols within and above plant canopies is important 
in many agricultural and biological problems. The spread of plant pathogens, the 
effectiveness of pesticide spray applications, and fertilizer and pesticide volatiliz- 
ation from the soil are examples of processes which are strongly influenced by 
turbulent dispersion. These and other problems have provided incentive for the 
development of dispersion models which can be used within plant canopies. 

In general, Lagrangian methods provide the most natural approach to modelling 
turbulent dispersion. Their fundamental advantage when compared with Eulerian 
methods is the correct prediction of dispersion close to the source, in the “near- 
field” region (Raupach, 1989). In many problems a plant canopy or soil surface 
represents a spatially extensive source region, and correct treatment of near-field 
effects is especially important. The most powerful of Lagrangian methods in terms 
of versatility are trajectory-simulation models (also known as Monte Carlo or 
random flight models). These models numerically mimic the trajectories of marked 
fluid elements (particles) to create an ensemble average distribution of particle 
position and velocity. These distributions can then be used for example, to give 
the mean concentration downwind of a particle source. The computational basis 
of most trajectory-simulation models is a generalized Langevin equation, which 
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follows from the assumption that particle position and velocity evolve as a Markov 
process. Consider a particle moving vertically in response to turbulence. If z and 
w are the vertical position and velocity of the particle respectively, then as a 
Markov process we may write a generalized Langevin equation for the change in 
particle velocity (Thompson, 1987): 

dw=adt+bdt, 

with the change in vertical position given as, 

dz = w dt . 

The coefficients a and b are to be determined, dt is the model time-step, and dt 
is a random velocity increment selected from a Gaussian distribution having mean 
0 and variance dt. 

The first trajectory-simulation models were used to predict turbulent dispersion 
from continuous point sources well above any plant canopy (Thompson, 1971; 
Hall, 1975; Reid, 1979). They were (at best) suitable for an idealized atmosphere 
having Gaussian vertical turbulence. These models were quite simple due to the 
straightforward form of the Langevin equation in such an atmosphere, and pro- 
duced surprisingly accurate results. 

Predicting dispersion within a plant canopy represents a more challenging appli- 
cation for trajectory-simulation models. The grossly inhomogeneous nature of 
turbulence within a canopy is well documented. The turbulence is highly non- 
Gaussian as well. Vertical velocity distributions often show skewness 
(Sk, = w3/& where u,~ is the standard deviation of w) below -1 and kurtosis 
(Kt,+ = z/o:,) exceeding 10 (Baldocchi and Meyers, 1989; Amiro, 1990; Leclerc 
et al., 1991): a substantial deviation from Gaussian values of Sk = 0.0 and Kt = 
3.0. An additional complication for a canopy dispersion model is the role of 
streamwise velocity fluctuations (u). Above a plant canopy the effect of u on 
dispersion is small, due to the low horizontal turbulent intensity (Hall, 1975), and 
a one-dimensional (w) model is often sufficient. But within a canopy, where 
the horizontal turbulent intensity is large, an accurate treatment of streamwise 
dispersion is important (Legg, 1983; Legg et al., 1986). 

The last 15 years has seen a somewhat ad hoc progression from models of 
one-dimensional, homogeneous, Gaussian turbulence to those allowing for more 
complex flow. Wilson et al. (1981), Legg and Raupach (1982), and Leclerc et al. 
(1988) included, by differing methods, the effect of vertical inhomogeneity of (T, 
(unless appropriate allowances are made, there is the incorrect tendency for 
particles to accumulate in the region where u,. is small). Non-Gaussian turbulence 
was first included in the model of Legg (1983), who introduced Sk, by selecting 
the Langevin random velocity increment from a skewed distribution. De Bass et 
al. (1986) and Sawford and Guest (1987) also used non-Gaussian random forcing 



to produce Sk,,.. Although these models showed agreement with experimental 
results, it is now accepted that non-Gaussian random forcing in a Langevin equa- 
tion is incorrect (Gardiner, 1983). The effect of streamwise turbulence was in- 
cluded in the models of Hall (1975)) Hanna (1978), and Legg (1983). Hall (1975) 
added t2.2u, to the mean horizontal velocity at each calculation, the sign being 
chosen to maintain the proper U-W covariance. Hanna (1978) included an indepen- 
dent Langevin equation for U, similar to that for w, with no U-W covariance. Legg 
(1983) used separate Langevin equations for u and w and included covariance by 
selecting a random velocity increment in the u equation which was correlated with 
the random increment in the w equation. 

The development of trajectory-simulation models for complex turbulence had 
been hindered by the lack of definitive criteria for model formulation. But the 
efforts of Janicke (1983), Durbin (1983, 1984), Thomson (1984), and van Dop et 
al. (1985) to develop rigorous model criteria have culminated in the work of 
Thomson (1987) and his “well-mixed” criterion. Simply stated, this criterion re- 
quires that an initially well-mixed cloud of particles in an infinite domain should 
remain well-mixed. The importance of the well-mixed criterion is that it states the 
constraint implied by the Eulerian probability density functions (PDFs; presumed 
known) upon possible Lagrangian stochastic models. Consequently, the well-mixed 
criterion permits development of rigorously based trajectory-simulation models. 

Luhar and Britter (1989) used the well-mixed criteria to develop a one-dimen- 
sional model for inhomogeneous, non-Gaussian turbulence in the convective boun- 
dary layer (CBL). They included Sk,,. by using skewed PDFs which were created 
by summing two Gaussian distributions (Baerentsen and Berkowitz, 1984). Their 
results showed good agreement with laboratory experiments simulating dispersion 
in the CBL, and improved dispersion predictions over earlier models. A similar 
model was used by Weil (1990) and showed the importance of Sk,,, in CBL 
dispersion. Neither of these models resolves a surface layer. 

The objective of this study was to develop a two-dimensional (u, w) trajectory- 
simulation model which is consistent with the well-mixed criterion and applicable 
to the non-Gaussian inhomogeneous turbulence found within plant canopies. No 
two- or three-dimensional inhomogeneous, non-Gassian model has been derived 
to satisfy the well-mixed criterion. Two obstacles stand in the way of such a 
development. The first involves developing a Lagrangian stochastic model allowing 
non-Gaussian turbulence. In multi-dimensions the well-mixed criterion does not 
provide a unique model. This was demonstrated by Sawford and Guest (1988) 
who showed that two distinct Gaussian models, each satisfying the well-mixed 
criterion, gave slightly different results. At present there are no additional theoreti- 
cal constraints to resolve this non-uniqueness. The second obstacle is the formula- 
tion of non-Gaussian velocity PDFs. Generalized multi-dimensional non-Gaussian 
PDFs are not commonly encountered in applied meteorology. 
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2. Trajectory-Simulation Model 

2.1. MODEL DEVELOPMENT 

The velocity of a fluid element (particle) in a horizontal (x) and vertical (z) 
plane was split into height-dependent, horizontally homogeneous mean horizontal 
velocity (U) and fluctuating turbulent velocities (u, w). Assuming that the particle’s 
position and velocity evolve jointly as a Markov process, we specify a Langevin 
model for particle velocity and position: 

du = a, dt + b, dtU , 

dx = (u + U) dt , 
(1) 

dw=a,dt+b,dt,, 

dz = w  dt , 

where au, a,,,, b,, and b, are generally functions of velocity and position, and dtU 
and dt,,, are independent random Gaussian increments with mean zero and vari- 
ance dt. The a, and a, are conditional mean values of the particle acceleration. 

Consider a particle whose motion is governed by the above Markov process. Its 
state (x, z, U, w) evolves randomly in time, and can be represented as a point 
moving in four-dimensional phase space. The probability density p(x, z, U, w, t) 
that the particle “occupies” a given position in the phase space evolves determinist- 
ically (from some initial value that relates to how the fluid element was chosen or 
released), and for the particular model (1) chosen here is governed by the Fokker- 
Planck equation: 

dP -= I d(a,p) ---~- +wp) + 1 a2(bup) + 1 a2(bwp) 
at dZ &A dW 2 au2 2 t3w2 . 

Of course, neither the Lagrangian stochastic model (1) nor the evolution of p 
according to Equation (2) is yet determined, for the a and b coefficients remain 
to be specified. Thomson’s well-mixed criterion provides a constraint on these 
coefficients, namely that the Eulerian joint velocity PDF of all fluid elements at 
height I, Pub,(z) (which we shall assume to be stationary), must be a solution of 
Equation (2). If we define, 

a = 
u 

[ 
4 + ~Wdf’udz)) 

lt 2 au Ii p (z> UW’ 3 

then &, and & can be considered a probability “current” in the u and w  directions, 
and it is evident that &JPUW,(z) and &,,lP,,.(z) are effectively acceleration terms 
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that “push” the increments in du and dw. Inserting a, and a, into Equation (2) 
gives: 

fKwPuw(z)) ; NJU ; +&+v = o 
. 

(3) 
dZ au aw 

This is a continuity equation for probability in the u, w, z phase space. Conditions 
on &, and $,,. are (Thomson, 1987): 

4d,4Mj+0 as Iu,wI-?,m. (4) 

The dilemma for any two- (or three-) dimensional model is the specification of & 
and &,. Another, as yet undiscovered, constraint is required in order to define a 
solution (Sawford and Guest, 1988). 

We attempted to find a simple solution to Equation (3) which met the conditions 
in (4). Equation (3) states that the divergence of probability current in the vertical 
is balanced by the divergence of probability current in the velocity plane. The 
simplest solution is to set either & or $,,, to zero. Setting & to zero gives, 

wP,,(z) dw . 

This is the unique value of &, for a one-dimensional model (Thomson, 1987; 
Luhar and Britter, 1989; and Weil, 1990). In this case a vertical gradient in P,,(z) 
results in a vertical acceleration of the particle via the effect of &, on a, but 
would have no effect on u. Unfortunately, this leads to a violation of the conditions 
in (4), since a two-dimensional model & does not in general go to zero as w 
becomes infinitely large (this violation would lead to infinite particle accelerations). 
The same problem exists if &, is set equal to zero. 

The &, and &,, are the u and w components of a vector + in the u, w phase 
space: + = &i + &,j, where i and j are unit vectors in the positive u and w 
directions, respectively. We considered two simple specifications of +. 

(i) 4 acts to conserve the magnitude of the velocity fluctuation vector. An 
arbitrary possibility would be that the + component of particle acceleration main- 
tains the magnitude of the fluctuation vector, but alters its direction. With this in 
mind, the u, w phase space was recast in cylindrical coordinates (s, e), where s is 
the magnitude and 0 is the direction of the velocity fluctuation vector: 

S= v u2 + w2, 0 = tan-‘(u/w) . 

Equation (3) now becomes: 

v . + = - n (s cos BP,,,,(z)) 
dZ 

The + can be expressed in s, 19 coordinates as, 
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where e, and ee are unit vectors in the direction of increasing s and 8, respectively. 
In cylindrical coordinates (Spiegel, 1963), 

and the desired solution (with +s = 0) of Equation (3) is, 

with 

c&, = - & sin 8, & = $,cos 8. 

Unfortunately this solution suffers from a lack of a boundary condition: &,(s, &) 
is unknown except at s = ~0. This solution was rejected. 

(ii) + acts to conserve the direction of the velocity fluctuation vector. Another 
simple possibility would be that + accelerates particles either towards or away 
from the local mean (u = w  = 0), while the orientation of the velocity fluctuation 
vector remains constant: so that 4 is oriented along a line through the origin of 
u, w  space (Figure 1). The corresponding solution of Equation (3) (with &, = 0) 
is, 

(5) 

and 

4~~ = 6 ~0s 0, C#J~ = c& sin 0 . 

This was the specification of + that we used in our model. It is not completely 
satisfactory. Although & +O as s + 00, there are.situations where P,,,,(Z) could 
go to zero more rapidly than &. This would result in large accelerations at high 
speeds, often directed toward higher speeds. In the cases that we considered, we 
did not find this to be a problem. A more serious difficulty is the fact that 4s -+ m 
as s + 0. We were prepared to set a low threshold value for s in the & solution, 
but in practice never needed to, as particle speeds remained high and 45 was well 
behaved. 

According to Kolmogorov’s theory of local isotropy, the velocity changes 6~; 
over a small time interval 6t (St much smaller that the Kolmogorov timescale) 
satisfy 

(SUi SUj) = 6tCo66ij ) 

where E is the mean turbulent kinetic energy dissipation rate and C, is a universal 
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Fig. 1. Illustration of the 4zA and c$,+ components of the vector 4 in u, w phase space. 

constant (experimental values of C, vary). For the Langevin model to obey this 
constraint, it is necessary that 

b,=b,=1/C,t. (6) 

We have estimated C”E as 2a$/r, where T is the Lagrangian timescale. 

2.2. NON-GAUSSIAN PDF 

We examined a bivariate Edgeworth expansion (Mardia, 1970), whose marginal 
distributions are of the Gram-Charlier type, as a possible method of generating 
the necessary non-Gaussian two-dimensional PDFs. The advantage of this method 
is its simplicity and flexibility in fitting any number of higher order statistical 
moments. Using simulated atmospheric flow statistics (Raupach et al., 1986). we 
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found that PDFs created from the Edgeworth expansion using up to third-order 
moments had poorly behaved tails: negative probabilities and oscillations in the 
PDF surface. In a trajectory-simulation model, these characteristics would likely 
prove disastrous. Some particles would likely move into a high velocity PDF 
“location” of negative probability, giving a sign reversal in a, and a,, and acceler- 
ation toward higher velocities. Particle behaviour will be unpredictable even in 
positive probability regions of the PDF tails because of the nature of the + 
calculation in our model (integration of the PDF surface along a radial from an 
infinite velocity). For these reasons an Edgeworth expansion was abandoned. 

In one-dimension, Baerentsen and Berkowitz (1984) constructed a non-Gaus- 
sian PDF as a linear combination of two Gaussian distributions. By varying the 
“weight” between the two distributions, and the distribution means and variances, 
they were able to correctly fit the mean, variance, and skewness of w  over a range 
of conditions in the CBL. Following Baerentsen and Berkowitz, we constructed 
U, w  joint-PDFs as a linear combination of two joint Gaussian distributions: 

p,&) = AP, + BPB 3 (7) 

where PA is the Gaussian distribution: 

P/j = 
27mAuw*1vm x 

_ (U - &)‘&,A + (W - wA)*&A - +A(24 - aA)(W - ~A)~uA~wA 

2’dAd~A(~ - ,&) 1 7 

with an analogous expression for Pg. The correlation coefficients pa and pB were 
chosen so that: 

- 
PA = A!?!- 

PB = 
(Uw - APA(+~A~~A) 

- Equation (9) ensures the correct uw for the combined distribution. There is the 
potential for lpel to exceed 1, although we did not encounter this problem. 

Equations (7) and (8) represent a system containing 10 unknowns (A, B, We, 

WB, CT WA, u,B, UA, aB, (T,A, u,B ). We attempted to specify the unknowns by solv- 
ing for the first five moments of w, 

A w”PA dw du + B wnPs dw du = w”, 

n=0,1,2,3,4; (10) 
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four moments of u, 

A u”P/, du dw + B unPBdudw=u”, 

It = 1,2,3,4; (11) 

and mixed moment 

uw*P/, du dw -t B 2 uw2Ps du dw = uw . (12) 

Using the flow statistics of the wind tunnel experiment (an artificial canopy of 
Raupach et al. (1986)) we were unable to obtain a solution for Equations (lo), 

2 (11)) and (12). Focusing on the mixed moment, uw , we found that a solution 
7 required unrealistically large magnitudes of uw . We decided to eliminate the 

2 uw constraint (Equation (12)), and arbitrarily define 

2 
UuA = (=A)*, CT& = (R&)* . 

This is similar to the assumption made by Weil(l990) for the one-dimensional case. 
This leaves nine unknowns (A, B, EJ~, @B, IT,/,, (T,B, CA, it& R), t0 be solved by 
the nine moment equations: 

A+B=l, 

AWA+ BI-VB=O, 

A@:, i- 602,,4iifj + ii>) + B(~U~B + 6&ti~ •I ~22) = 2. 

Equations (13) were solved by numerical methods. 
Figure 2 shows a constructed PDF for a typical within-canopy case (flow statistics 

from Raupach et al., 1986). The solution has the correct velocity means, variances, 
skewness, and kurtosis, and covariance. Further moments are generally not cor- 
rect. The PDF illustrated in Figure 2 is clearly non-Gaussian as illustrated by the 
non-zero mode (located near u = -1 and w  = 0.3). This PDF qualitatively agrees 
with observations of canopy flow: a temporal predominance of low velocity up- 
drafts having a horizontal velocity less than the mean (quiescent periods), punctu- 
ated by high velocity downdrafts having a high horizontal velocity (sweeps). 
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Fig. 2. Joint-probability density function for turbulent velocities (u. W) within a canopy at z/h, = 0.85 
formulated from the flow statistics of Raupach et al. (1986). The label NC1 is used to distinguish this 

PDF from others introduced later in the text. 

2.3. APPLICATION OFTHE TRAJECTORY-SIMULATION MODEL 

The &, and C#J~ corresponding to our non-Gaussian PDF are given in the Appendix. 
In the model, vertical derivatives in C#J~ and &, were evaluated in finite difference 
form. The nine PDF parameters were tabulated for 500 unevenly spaced vertical 
levels chosen to provide high resolution at the levels of the greatest gradients in 
flow statistics. For each particle trajectory step, the tabulated parameters at the 
nearest height were used along with uncentered “upward” height derivatives 
(creating a slight but quantitatively negligible bias in our derivative calculations). 

The time-step (dt) was selected by comparing simulation outcomes for different 
values of dt. Using the flow information from Raupach et al. (1986), we calculated 
concentration profiles at several points downstream of a continuous line source 
using dt equal to 0.17, 0.057, 0.0257, 0.017, and 0.0057. The profiles showed little 
systematic change for time-steps below 0.057. For our simulations we selected 
dt = 0.0257. 

The ground was taken to be a perfect reflector. When the particle reached the 
ground (actually a roughness height just above the ground) it was “bounced”, and 
the sign of w  was reversed. This simple reflection scheme is questionable in non- 
Gaussian turbulence. Asymmetry of the PDF makes it possible that a sign reversal 
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of w  would result in an “invalid” w  (or joint u, w  velocity). Weil (1990) addressed 
this problem in a one-dimensional model by choosing a reflected positive velocity 
(w+) that preserves the “cumulative negative probability” of the negative “im- 
pact” velocity (w -): 

Experimenting with different reflection schemes revealed a general insensitivity of 
our model results to reflection. This was due to the fact that reflection was not a 
frequent occurrence when within-canopy profiles were imposed. Incorporating 
flow statistics near the ground (decreasing velocity variances with decreasing 
height) creates a barrier to model particles, even without resolving a sublayer at 
the ground across which variance vanishes. Perhaps using more realistic flow 
statistics and an appropriately reduced timestep near the ground may eliminate 
the need for a reflection scheme (ground unattainable). 

3. Model Comparisons with Experiments 

3.1. TAVOULARIS AND CORRSIN LINE SOURCE EXPERIMENT 

Tavoularis and Corrsin (1981), hereafter referred to as TC, studied dispersion of 
heat from a line source in linearly sheared wind tunnel flow. A heated wire was 
placed perpendicular to the mean flow at a height zsrc = 0.5.5h, (h, is the height of 
the wind tunnel). The turbulence was slightly non-Gaussian (Sk, = 0.16, Sk, = 
-0.22, Kt, = 3.2, Kt, = 3.1). Although not representative of canopy flow, its 
approximate homogeneity makes it a good test for the effects of skewness and 
kurtosis on dispersion because the & and (p,+ terms in our trajectory-simulation 
model vanish. 

We compared the TC temperature profiles with our model predictions at a fetch 
x = 5.0h,. Unfortunately the heat source strength and the Lagrangian timescale 
were not specified, limiting the information which can be extracted. We ran the 
model with 7 = 0.042s, approximated from a formula suggested by TC: 

7=5+ 
J 

2 

A= 

ULl (&4zx)” . 

We then normalized the predicted temperature profiles with the peak temperature. 
The addition of skewness and kurtosis to the PDF improves the prediction of 
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Fig. 3. Comparison of normalized temperature measurements from the TC experiment (e) with 
predicted values using Gaussian (-- ) and non-Gaussian (-------) PDFs. Source height is indicated 

by the -+. 

the peak temperature location (Figure 3), which is the only aspect of the TC 
profile whose simulation is not sensitive to the specification of r and source 
strength. The Gaussian model maintains the temperature peak at tsrc, while skew- 
ness and kurtosis act to lower peak location. The difference in peak location was 
statistically significant (P = 0.05, paired t-test), although the concentration profiles 
were not statistically different near the temperature peak. These results were 
anticipated, because a positive Sk,,, indicates a temporal predominance of low 
velocity downdrafts, balanced by high velocity updrafts. This would move the 
majority of particles initially downward from the source, as compared to a Gaus- 
sian balance between upward and downward, and reduce the height of the peak 
temperature (the shear in mean horizontal velocity also acts to lower the tempera- 
ture peak). It should be noted that in the TC flow, Sk, is positive and Sk, is 
negative, while within a canopy the signs are reversed. Therefore within a canopy 
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skewness would be expected to move the peak concentration upward (while mean 
horizontal velocity shear moves it downward). 

Judging by the results of model predictions of the TC data, it appears that in 
even slightly non-Gaussian flow, a consideration of non-Gaussian characteristics 
may be important in predicting certain dispersion features. 

3. THE LEGG, RAUPACH, AND COPPIN LINE SOURCE EXPERIMENT 

The experiment of Legg, Raupach, and Coppin (1986), hereafter referred to as 
LRC, examined dispersion within and above an artificial crop in a boundary-layer 
wind tunnel. Heat was released as a tracer from an elevated line source located 
perpendicular to the flow within the canopy at a source height zsrc = 0.85h, (h, 
is the canopy height). Flow within and above the canopy was inhomogeneous and 
non-Gaussian (Raupach et al., 1986): this was representative of a real canopy and 
a good test for our model. 

The flow statistics we used in our model simulation of LRC were drawn from 
Raupach et al. (1986) and are shown in Figure 4. The 500 vertical levels of the 
model parameter table were chosen such that 400 were evenly spaced from a 
reflecting boundary at z = O.O67h, to z, = 2.067h,. The remaining 100 levels were 
evenly spaced up to z = 3.72h,. Above this height the flow was taken to be 
homogeneous. 

An important comparison which can be made for the inhomogeneous LRC flow 
is between the results of Thomson’s (1987) Gaussian model and our model using 
Gaussian PDFs. Thomson’s a, and a,,, are: 

1 - 
a, = - +u 

2(&Z,, - uw’) 
b~[u$u - uww] + - 

Pudz) ’ 

a 
M’ = - 2(&r;, 

_ uw2) b2,[-ctwu + a2,w] + -!&!f- 
P,w(z> ’ 

1 

with 

4, 1 a(uw) -=-- +we+ 
1 

P,,,,.(z) 2 az az 2(cTfx 
X 

- uw’) 

x &d 
[ 

uw-uwaaf,w2 -a(=> 2~(=4 2 
-uw-uw+u -w 

3Z dZ aZ 1 hz ’ 

db --2+ 1 au* 1 
X 

P,,,,(z) 2 az 2(&F - iii+‘) 

Notice the vertical derivative of the mean horizontal velocity (U) in &: Thomson’s 
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Fig. 5. Comparison of predicted temperature profiles for our model using Gaussian PDFs ( -1 
with Thomson’s (1987) Gaussian model (-------) at a fetch x = 2.78h,. 

Langevin equation determines the change in total velocity (U + u), not just the 
change in the fluctuating component as does ours. The & and $,+ terms in 
Thomson’s model differ significantly from ours. This difference must occur to 
allow for a non-Gaussian PDF. Although it may be possible that some formulation 
of + relaxes to Thomson’s model in the Gaussian case, ours does not. We ran 
Thomson’s model with the b, and b, values given by Equation (6). Concentration 
profiles computed using our model were not statistically different (paired t-test, 
P = 0.05) from those predicted by Thomson’s model at fetches x = 0.38/z,, 2.78h,, 
and 11.60h,. (Figure 5). That these two different models, both satisfying the well- 
mixed criteria, gave statistically the same results may indicate a general insensitiv- 
ity to the exact form of + in a model developed from the well-mixed criteria. 

Comparisons of the LRC temperature profiles with our model predictions using 
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both Gaussian and non-Gaussian PDFs were made at fetches of x = 0.38/z,, 2.78/z,, 
and 11.60h, (Figure 6). There was good agreement between the LRC measure- 
ments and the Gaussian model. Given the standard error of the model predictions 
and the observed scatter in the LRC data, only in the regions just above the 
canopy at x = 2.78/z,, and just above the ground at x = 0.38/z,, could the model 
predictions be considered significantly different from the LRC measurements. This 
is surprising, given the complex, non-Gaussian flow within and above the canopy. 
The model underprediction just above the ground may be the result of experi- 
mental complications. The plume centroid at the source (X = 0) was measured by 
LRC to lie significantly below zsrc and they suggest that a possible explanation is 
the existence of an organized recirculating flow (caused by canopy elements) which 
resulted in upstream heat transport in the lower canopy. If this is the case, 
temperature underprediction near the ground would be unavoidable. 

The performance of the non-Gaussian model was poor. At all three fetches the 
non-Gaussian model temperature predictions were not as good as the Gaussian. 
At x = 0.38/z, and 2.78h, the non-Gaussian model underpredicted temperature 
below zsrc and overpredicted temperature immediately above zsrc. The difference 
between the Gaussian and non-Gaussian predictions at these fetches was statist- 
ically significant (P = 0.05) at most heights. At x = 11.6h, the differences between 
the Gaussian and non-Gaussian models are smaller, and below z = 2h, the model 
results were not statistically different. But at greater heights the results of the two 
models remain different. 

The non-Gaussian model predictions were disappointing because the change 
from Gaussian to non-Gaussian profiles seems consistent with the present view of 
canopy flow. The flow in LRC is characterized by negative Sk,. In this flow, low 
velocity updrafts would be temporally dominant. This is a well-known character- 
istic of canopy flow: a predominance of low velocity updrafts, punctuated by 
occasional high velocity downdrafts (increasing kurtosis reduces the “peakiness” 
of the distribution). Therefore a negative Sk, should shift the final particle distribu- 
tion upwards, with a larger peak just above the source when compared with the 
Gaussian case. This was just what was seen in the modelled temperature profile 
(the reverse was observed in the positively skewed TC flow). 

In addition to the temperature profiles, we compared model predictions of the 
horizontal turbulent heat flux (a) with the LRC measurements at x = 0.38h, and 
2.78h, (Figure 7). The results confirm the superiority of the Gaussian model over 
the non-Gaussian model. At most heights the Gaussian predictions were not 
statistically different from measurement values, while the non-Gaussian predic- 
tions were statistically different near zsrc at x = 0.38h, and just above the canopy 
at x = 2.78h,. At larger fetches 3 predictions for both models approach zero, 
agreeing with experimental results. 

3.3. THE COPPIN, RAUPACH, AND LEGG PLANAR SOURCE EXPERIMENT 

The experiment of Coppin, Raupach, and Legg (1986), hereby referred to as CRL, 
was part of the same series as LRC. Using the same wind tunnel arrangement, CRL 
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Fig. 7. Comparison of normalized horizontal turbulent heat flux measurements from the LRC experi- 
ment (.) with predicted values using Gaussian ( -) and non-Gaussian (-------) PDFs at two fetches 

(xl. 

constructed a planar heat source from an array of heated wires at height zsrc = 
0.80/z,. The trajectory-simulation details for CRL were identical to the simulation 
of the LRC experiment. Model temperature profiles were compared with measured 
values at fetches of x = 8.8/z, and 33.8h, (Figure 8). 

Since a planar source is a superposition of line sources with differing fetches, 
model temperature profiles were essentially a hybridization of the three line source 
profiles of LRC that we have shown. At x = 8.8h, the temperature was underpre- 
dieted below zsrc by both the Gaussian and non-Gaussian model, consistent with 
model predictions of LRC at the shortest fetch. The overprediction in the peak 
temperature and peak height by the non-Gaussian model when compared with the 
Gaussian model agree with the LRC simulations. Predicted temperature profiles 
improve for both models at the longer fetch (x = 33.8h,), with the Gaussian model 
giving good predictions. This improvement was due to a proportional reduction 
in the heat contribution from the source area nearest the measurement location. 
As seen with the LRC simulations, the model predictions are better farther from 
the source. 
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3.4. THE SENSITIVITY OF MODEL RESULTS TO PDF FORMULATION 

The inferiority of the non-Gaussian model (relative to the Gaussian) in predicting 
dispersion in, inhomogeneous turbulence (LRC and CRL) was surprising. As- 
suming that the experimental measurements were correct, poor performance of 
the non-Gaussian model could have occurred because the underlying Lagrangian 
stochastic model was incorrect, or because the PDFs formulated for use with the 
model were incorrect. At present there are no criteria for judging the validity of 
any particular Lagrangian model which satisfies the well-mixed criterion other 
than by the extent of agreement with experiment, and the effects of the model 
assumptions and the PDF assumptions are not easily separable. A possible clue 
to the cause of poor simulations is the sensitivity to PDF characteristics. 

Three different non-Gaussian PDF profiles (NGl, NG2, and NG3), having 
similiar moments, were “constructed” for the simulation of the LRC experiment. 
Profile NGl was the standard profile used for our previous simulations. Profiles 
NG2 and NG3 result from redefining (T[,~, 
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and solving Equations (13). Profile NG2 corresponds to (Y = 0.8, and NG3 to (Y 
variable with height (cz = 0.8 to 1.8). Each of the three PDF profiles had the 
correct u and w mean, variance, skewness, and kurtosis, and the correct G; but 

2 other higher order moments differ. Figure 9 shows the difference in uw for the 
three profiles and their large difference from the measured values. Figure 10 shows 
the dramatic difference in PDFs between NG2 and NG3 at a height z/h, = 0.85, 
which can be compared with the similiar PDF for NGl in Figure 2. Clearly, higher 
order moments are important in defining a PDF. 

Model simulations of the LRC experiment using the three non-Gaussian PDFs 
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I I 
Fig. 10. Non-Gaussian velocity (u. w) PDFs, from the PDF profiles NG2 and NG3, corresponding 

to height z/h, = 0.85 in the LRC experiment. 

yielded large differences in concentration profiles at fetch x = 0.38h, (Figure 11). 
The modelled concentration profile from NG3 was significantly different from 
NGl and NG2, with a peak concentration above the source height. This is due to 
the much narrower velocity region of high probability in NG3 at the source height, 
centered at u = - 1.30, w  = 0.35 (Figure 10). Therefore most particles moved 
slowly upward from the source. The NG3 PDF also had a greater probability of 
large negative w  than NGl and NG2, giving higher ground-level concentrations. 

Higher order PDF moments can certainly affect the simulated dispersion of a 
trajectory-simulation model. The differences in concentration profile resulting 
from PDF differences show that attempts to increase the accuracy of dispersion 
models by creating more accurate PDFs will require formulations having accuracy 
over a range of higher order moments. The differences also suggest that the poor 
performance of the non-Gaussian model in the LRC and CRL experiment is at 
least partially due to errors in our PDF formulations. 

4. Summary and Conclusions 

A two-dimensional trajectory-simulation model (which was consistent with Thom- 
son’s (1987) well-mixed criterion) was developed. We assumed a simple form for 
the “probability current” (+) which satisfies the probability continuity equation 
in the ~1, w, z phase space, namely that +lPU,,,(z) accelerates particles directly 
towards (or away from) the origin of (u, w) space. For Gaussian turbulence the 
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model gave results which were in statistical agreement with the multi-dimensional 
Gaussian model of Thomson (1987). 

The novelty of our trajectory-simulation model is that it permits non-Gaussian 
velocity statistics, a characteristic of flow within and above plant canopies. The 
effect of non-Gaussian turbulence on dispersion was examined by creating non- 
Gaussian u, w  probability density functions (PDFs) by summing two Gaussian 
PDFs. The individual Gaussian parameters were selected so that the resultant 
PDF had the correct u and w  mean, variance, skewness, and kurtosis, and the 
correct covariance. Other moments were generally not correct. 

Comparisons of the model results with wind-tunnel dispersion experiments 
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showed that in homogeneous, slightly non-Gaussian turbulence (TC experiment), 
the incorporation of skewness and kurtosis in the PDF resulted in correct predic- 
tion of the height of the concentration peak downwind of a line source. But in 
the much more complex case of inhomogeneous, highly non-Gaussian turbulence 
(LRC and CRL experiments) typical of flow within a plant canopy, the addition 
of skewness and kurtosis in the model resulted in substantially worse agreement 
with experimental data. 

Although the poor results of the non-Gaussian model may be the result of an 
incorrect Lagrangian stochastic model, we believe that poorly formulated PDFs 
are the more likely cause. The agreement between the results of our model 
with Gaussian statistics and Thomson’s (1987) Gaussian model, which have very 
different 4, suggest to us an insensitivity to the exact form of a model developed 
from the well-mixed condition. But our results clearly show the sensitivity of our 
model to PDF differences. At first it seems improbable that extending the accuracy 
of a PDF to the individual third and fourth moments (skewness and kurtosis) 
would reduce the accuracy achieved by the Lagrangian stochastic model, but the 
generality of a PDF constructed from two Gaussian PDFs is limited. Correctly 
fitting some of the moments constrains other moments to values which may not 
be realistic. For instance, in the case of the LRC and CRL experiments (highly 

2 non-Gaussian turbulence), the absolute errors in uw (which were not used to fit 
the PDFs) were much greater for our non-Gaussian PDFs than for the Gaussian 
PDFs (where uw2 = 0). Unfortunately, even small errors in individual u, w  PDFs 
may lead to substantial errors in estimating PDF spatial derivatives (which define 
& and &,). For homogeneous flow the impact of incorrect PDFs is limited, 
as the PDF spatial derivatives vanish (& =& = 0), and particle acceleration is 
determined by the u and w  derivatives of the PDF; in any realistic PDF formulation 
these derivatives should be well behaved, resulting in acceleration towards the 
local mean. But for inhomogeneous flows & and & can dominate the calculation 
of particle acceleration, and PDF errors can have a dramatic effect. Our results 
suggest that for inhomogeneous flow, attempts to increase the accuracy of traject- 
ory-simulation models by using more accurate PDFs will require the development 
of very accurate PDF formulations. 

But the development of improved PDF formulations may prove to be a wasted 
effort. The surprising accuracy of the Gaussian model in the complex non-Gaussian 
flow seems to indicate that the effects of skewness and kurtosis on mean absolute 
dispersion within a canopy are minor. Although others have shown that skewness 
affects dispersion importantly in the CBL (a simpler flow than found within 
canopies), and we found that the addition of skewness and kurtosis improved 
prediction in homogeneous turbulence, in highly inhomogeneous flow skewness 
and kurtosis may have a minimal effect when compared with other factors such 
as the strong vertical gradients in velocity variance and shear stress, In fact it may 
be unrealistic to add greater detail to PDFs when underlying model assumptions 
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such as stationarity and horizontal homogeneity are not satisfied by the flow 
(environmental flows are rarely truly stationary; and even wind tunnel flows pre- 
sent to a drifting particle, horizontal inhomogeneity in mean properties). 

In conclusion it appears that a two-dimensional Gaussian model, such as ours 
or Thomson’s (1987), is very accurate in modelling dispersion in the inhomogene- 
ous, non-Gaussian turbulence within and above a plant canopy. Our efforts to 
include non-Gaussian statistics resulted in a much more complex model (requiring 
much greater computation time), and gave less accurate results. We believe that 
this is due to limitations in our formulation of non-Gaussian PDFs. Until additional 
dispersion experiments in complex flow show otherwise, we believe a multi-dimen- 
sional Gaussian Lagrangian approach represents the most accurate method of 
modelling within canopy dispersion. 
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Appendix 

The & and $,,, terms in our non-Gaussian trajectory simulation model are found 
by elementary but tedious algebra. The solution for C& and & as given in the text 
is: 

& = c& sin 8, (bw= ~scOs~, 

where (Equation (5)), 

A = - 
cos 8 d s -_ 

I s az z.2 
P P,,(z) ds’ * 

with 

(A-1) 

.S= v 22 + d, 8 = tan-‘(u/w) . 

Inserting our non-Gaussian PDF (Equations (7) and (8) expressed in S, 0 coordi- 
nates) into (A-l) yields the following solution: 

jf- L/Is + + !!$exp(M: iLBNB) x 
B B 
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with 

(A-2) 

K* = 27T(T,*Cr,/$l- p’A, 

L/j = 
(uiA sin’ 19 + ~2,~ cos2 8 - ~P~(T,~(+~~ sin 6~0s 0) 

wi4&4 - pi) 
> 

MA dp Au,Au,A*)A sin 0 - tiA~$A sin 8 + pAuUAuwAziA cos 8 - W’AuzA cos t9) 

2&aL(1- Pi) 
9 

The “B” subscript on the terms in Equation (A-2) indicates the use of the “B” 
parameters instead of the “A” parameters shown in the above terms. 
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