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Abstract

We use an inverse–dispersion technique to diagnose gas emissions (ammonia) from a swine farm. A backward

Lagrangian stochastic (bLS) model gives the emission-concentration relationship, so that downwind gas concentration

establishes emissions. The bLS model takes as input the average wind velocity and direction, surface roughness, and

atmospheric stability. Despite ignoring wind complexity and assuming a simplified source configuration in the model

calculations, we argue that with concentration and wind measured sufficiently far from the farm the errors can be

relatively small. An important part of our analysis was identifying periods likely to give erroneous results. The resulting

emission calculations (6.5 and 16 g animal�1 day�1 in March and July, respectively) are plausible in the light of

comparative figures.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Lagrangian stochastic models; Inverse–dispersion; Trace gas; Ammonia emissions; Monin–Obukhov similarity theory;

Dispersion models
1. Introduction

Gas emissions from a farm to the atmosphere are

difficult to measure directly. One complication is that

farms are often a superposition of diverse emission

sources, such as barns and waste storage facilities. One

could concentrate on measuring these sources in

isolation using, for instance, a mass balance or tracer

technique for barns (e.g., Sharpe et al., 2001; Kahar-

abata and Schuepp, 2000), and micrometeorological or

chamber techniques for outdoor sources (e.g., Aneja et

al., 2001; Harper et al., 2000). But the effort in making

such an inventory can be considerable. Another strategy

would be to measure the totality of emissions by a mass
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balance calculation, using wind and concentration

measurements taken in a vertical plane downwind of

the farm (Phillips et al., 2000). Yet to fully capture the

emission plume from real-sized farms would require a

measurement plane extending many meters above

ground. Is there a simpler measurement technique?

Consider the hypothetical problem in Fig. 1, with an

area source emitting gas at a continuous and unknown

rate Q ðkg s�1Þ. Let us choose a point M within the

emission plume where the time-average gas concentra-

tion above background (C � Cb) is measured. With an

atmospheric dispersion model prediction of the ratio of

concentration at M to the source emission rate,

ðC=QÞsim, one can infer the emission rate as:

Q ¼
C � Cb

ðC=QÞsim
. (1)
d.
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Fig. 1. The inverse-dispersion technique for estimating emission rate (Q). Concentration rise above background (C � Cb) is measured

at M. The ratio ðC=QÞsim is calculated with a dispersion model. In a bLS model trajectories are calculated upwind of M, and ðC=QÞsim
is given by trajectory ‘‘touchdowns’’ inside the source (w0 is the vertical velocity at touchdown).
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This is the basis of the inverse–dispersion technique. It

requires only a single measurement (C � Cb) downwind

of the source, with flexibility in the measurement

location M.

In this paper we apply an idealized inverse–dispersion

technique to calculate ammonia emissions from a swine

nursery farm. We begin with a general discussion of the

technique, the assumptions needed to make the techni-

que practical in a farm setting, and limitations to its use.
1Inverse–dispersion methods can be generalized to deduce an

apportionment of emissions within a complex, but this is a more

difficult problem (e.g., Lehning et al., 1994).
2. Ideal vs. real terrain

Prediction of ðC=QÞsim in Eq. (1) is not trivial.

Different types of dispersion models (e.g., Gaussian

plume, K-theory) make this calculation with different

levels of sophistication. In more realistic models one

must furnish the average wind and turbulence statistics

of the atmosphere—a difficult proposition. But for

short-time intervals in a horizontally homogeneous

surface layer (height zt50m, but above a plant

canopy), Monin–Obukhov similarity theory (MOST)

states that the statistical properties of the wind are

determined by a few key parameters (Garratt, 1992)

which can be found by surface observations: the friction

velocity u�, the Obukhov stability length L, and the

surface roughness length z0 (and we add the average

wind direction b for a complete description). An

example of an ideal surface layer application is given

by Flesch et al. (2004), who calculated emissions from

concentration measured downwind of an area source in

simple terrain. A backward Lagrangian stochastic (bLS)

model gave ðC=QÞsim. After eliminating periods when

MOST relationships are inaccurate (i.e., extreme stabi-

lities and low winds), the diagnosed emission rate QbLS

overpredicted Q by an average of only 2%.
A real farm presents complications for a technique

that assumes an idealized atmosphere. A variety of

structures (buildings, trees, etc.) can create vortices, jets,

and sheltered zones. How should this complexity be

addressed? While it is possible to rigorously model

dispersion in these environments, it requires specifying

the spatially complex wind field. This is a difficult task.

Comprehensive measurement of winds around a farm is

beyond practical capabilities, and the alternative of

modeling the wind is a complicated undertaking that

gives predictions that may not be accurate (e.g., Wilson

and Yee, 2003).

Another complication with real farms is the source

configuration. As described here the inverse–dispersion

technique calculates a single emission rate Q. With a

compound source one must make assumptions about

the component emission rates and their spatial config-

uration. For instance, one might assume that area

sources have the same areal emission rate, or the farm

can be treated as a set of identical point sources, etc.

Such assumptions carry the risk of error in a Q

inference.1
3. Neglecting complexity: move downwind

3.1. Wind complexity

Consider a farm within a nominally homogeneous

landscape, i.e., farm structures locally disturb the wind

but there is a downwind return to a spatially represen-

tative ambient state (i.e., where MOST is valid). We

postulate that at some distance the set of tracer



ARTICLE IN PRESS
T.K. Flesch et al. / Atmospheric Environment 39 (2005) 4863–4874 4865
trajectories emitted from the farm is not significantly

different from that emitted from an equivalent undis-

turbed location. If measurement point M is beyond

this threshold we can ignore the wind disturbance and

take advantage of the simplicity of an idealized

calculation of ðC=QÞsim. The most important factor

in determining this distance is expected to be the height

of the farm obstacles h (e.g. barn or trees), since the

rate of wind ‘‘recovery’’ behind objects is known to scale

on h.
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Fig. 2. Ratio of predicted to actual emission rate QbLS=Q

plotted versus the downwind distance of the concentration

measurement (fetch). The surface emission source (6m� 6m

area source) was surrounded by a windbreak fence, and the

fetch is scaled on the fence height h, and set to zero at the

downwind fence location (when x=ho0, concentration was

measured in the fenced plot).
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Fig. 3. Hypothetical emission complex: two surface area sources (em

having emission rate Q3). Line-average concentration CL is calculated

are then used to deduce the total complex emission rate, assuming a
Flesch et al. (2005) conducted an experiment with a

tracer source surrounded by an h ¼ 1:25m tall wind-

break fence that disturbed the wind. An idealized bLS

dispersion model that did not account for the wind

disturbance was used to diagnose the emission rate QbLS.

Systematic errors of about 50% occurred when QbLS

was calculated from concentration measured near the

fence (Fig. 2). But when measured beyond 5 h from the

fence, the average QbLS was only 2% different from the

actual emission rate. Following from Flesch et al., we

conclude that if concentration is measured beyond

about 10 h from a farm, ignoring the local wind

complexity will result in only a small error in the

emissions inference.
3.2. Source complexity

Another advantage to moving away from a source

complex is decreasing sensitivity to how one models the

source configuration—details we do not generally know

in advance. Intuition says that at some distance from a

complex the component source plumes blend and

become practically indistinguishable from a single

source plume with the same aggregate emission rate.

For example, Phillips et al. (2000) refers to van

Ouwerkerk (1993) when stating that for measurements

beyond a distance of 10 farm heights or widths, a farm

can be approximated as a single point source.

Consider the hypothetical farm in Fig. 3, consisting of

two 4000m2 area sources emitting tracer at 1 and
CL- 200m CL- 300m CL- 400m CL- 500m

ission rates Q1 and Q2) and three elevated point sources (each

at the illustrated positions using a dispersion model. These CL

single area source given by the dashed line.
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Fig. 4. Ratio of inferred to actual emission rate (QbLS=Q) for

hypothetical farm complex in Fig. 3, plotted versus distance

from the farm boundary to CL (fetch). Three atmospheric

stratifications are considered: neutral ðL ¼ 1Þ, stable

(L ¼ 10m), and unstable (L ¼ �10m). Curves are hand-drawn

fits. Top line gives QbLS if the complex is treated as a point

source (in unstable conditions). Fetch is also displayed as a

ratio of the source separation distance xs.

2Treating our hypothetical farm as a point source would

mean we must go � 10xs downwind for QbLS to be within 10%

of Q in the unstable case (Fig. 4).
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10 g s�1, and three elevated point sources (z ¼ 5m) each

emitting at 1 g s�1. At what distance can we safely

assume this farm complex is a single uniform area source

that occupies the farm area? A bLS dispersion model

(Section 4.3) is used to calculate line-average concentra-

tions CL (e.g., an open-path laser) downwind of the

farm using the actual source configuration for moder-

ately stable, unstable, and neutral atmospheric condi-

tions. The same bLS model is then used to ‘‘back

calculate’’ a total emission rate QbLS, but falsely

assuming the farm is a single 10,000m2 area source.

Here we ignore the potential for wind complexity.

Fig. 4 shows how the accuracy of QbLS for this

hypothetical farm depends on the location of CL. As CL

is measured further downwind there is the expected

trend toward greater accuracy (a fortuitous configura-

tion make the neutral case an exception). But note that

even with CL taken adjacent to the farm (CL�0m), the

error due to our incorrect source configuration is only

about 10–150%. At 500m from the farm the error drops

to approximately 5%.

When considering the distance necessary to simplify

the source configuration, an important scale will be the

separation distance between the source components (xs).

This will relate to the distance at which plume-blending

occurs. In our example the east–west separation between

the center of the two area sources (xs ¼ 50m) is the

largest distance (north–south averaging in CL makes the
north–south separation irrelevant). Extrapolating from

Fig. 4 we speculate that with CL measured beyond 2xs

from the farm, the error from an incorrect source

configuration is less than 10%. Generalizing from this

example is questionable. If the disparity in component

emission rates were smaller we could get closer and

achieve the same accuracy, and vice versa. In contrast, if

our modeled source configuration was less realistic, e.g.,

a point source instead of the area source, we would

expect to have to go further downwind.2
4. Implementation at actual farm

We conclude that with careful selection of a measurement

location, an idealized inverse–dispersion technique can give

the emissions from a farm complex within an error of

710% (on average). A first requirement is that the farm be

isolated on the landscape, so that wind disturbances

associated with the farm are local, with a downwind return

to ambient winds. Meteorological observations (u�, z0, L,

and b) are to be made in the ambient regime. Isolation

would also ensure that no nearby tracer sources confound

the concentration observations. Another requirement is that

concentration be measured many obstacle heights h down-

wind of the farm (we conservatively propose 20h). A third

requirement is that concentration be measured multiple

‘‘source-separation’’ distances xs downwind of the farm (a

location beyond 2 xs gave errors less than 10% in our

earlier example).

4.1. Swine nursery farm

Ammonia emissions are diagnosed from a swine

nursery farm in the western United States. Located in

a desert valley (elevation 1500m), the farm consists of a

single barn with two effluent lagoons (Fig. 5). Emissions

are calculated for 5–6 July 2002 and 11–14 March 2003.

There were 12,256 piglets on-site during July (averaging

14 kg per animal) and 11,664 in March (averaging 16 kg

per animal). The site is ideal for our application. The

terrain is flat and uniform around the farm, with a

sparse coverage of low sagebrush. The area was mapped

with a GPS unit. For prevailing southwest winds, only a

smaller farm is 4 km upwind.

A low berm surrounds the lagoons, rising about 1m

above the surrounding landscape (and the lagoon

surface). The barn is the dominant obstacle to wind

flow, and we take its height h ¼ 6m as our scaling

height. The other important scale is the separation

distance xs between the barn and lagoons (in the

alongwind direction). For southwest winds xs between
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Fig. 5. Experimental layout at the nursery farm (barn and two lagoons). Laser paths were located northeast of the farm so emissions

can be diagnosed for prevailing southwest winds. Meteorological information came from a sonic anemometer.
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the center of the lagoons, and between the northeast

lagoon and the barn center, is 50 and 90m respectively.

4.2. Concentration observations

Ammonia concentration was measured with an open-

path laser (GasFinders, Boreal Laser Inc., Edmonton,

Canada).3 The line-average concentration between the

laser and a distant retroreflector was processed to give

15-min averages (CL). To convert reported mixing-ratio

concentrations (ppmv) to absolute concentration (gm
�3)

we use measured air temperature T and assume an

atmospheric pressure of P ¼ 840hPa:

CLðgm
�3Þ ¼

Pmw

RT

1

106
CLðppmÞ, (2)

where mw is the molecular weight of NH3

(17.03 gmol�1) and R is the molar gas constant

(8.314m3 Pamol�1K�1). Background concentration Cb
3Listing of source names does not imply endorsement or

preferential treatment by the University of Alberta or the

United States Department of Agriculture.
was assumed to be insignificant (this was corroborated

when the wind brought ‘‘fresh-air’’ over the laser path).

The laser and reflector were placed northeast of the

farm in anticipation of the prevailing southwest winds

(see Fig. 5). For a southwest wind the laser path was a

minimum of 115/145m downwind of the lagoon/barn in

March, and 145/210m in July. This puts CL more than

20 h downwind of the barn, and a minimum of 1.2 xs

from the farm boundary (if xs is the lagoon–barn

distance; or 2.2 xs if we use the lagoon–lagoon

separation). The laser pathlength was 536m (July) or

348m (March). The laser and reflector was set at either

zm ¼ 1:7or1:8m above ground.
4.3. bLS dispersion model

A bLS dispersion model is used to calculate ðC=QÞsim
for each 15-min CL observation. We used the software

‘‘WindTrax’’ (Thunder Beach Scientific, Nova Scotia,

Canada) which combines an interface where sources and

sensors are mapped, with the bLS model described by

Flesch et al. (2004). In the bLS model thousands of
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trajectories are calculated upwind of the laser path for

the prevailing wind conditions (u�, L, z0, b). For an area
source the important information is where the trajec-

tories intersect the ground (‘‘touchdowns’’) and their

associated vertical velocity (w0):

ðCL=QÞsim ¼
1

N

X 2

w0

����
����, (3)

where N is the number of computed trajectories

(released evenly along the laser path), and the summa-

tion covers only touchdowns within the source (Fig. 1).4

The touchdowns map the concentration ‘‘footprint’’,

i.e., the ground area where emissions influence concen-

tration. We do not mimic ammonia deposition to

ground, which should be small given the dry conditions,

sparse vegetation, and short distances involved.

In our bLS simulations the farm is represented as

three surface area sources: the two lagoons and the area

occupied by the barn. Each is assumed to have the same

areal emission rate, so that touchdowns in any of these

areas are counted equally in Eq. (3). This treatment is

undoubtably in error. The two lagoons (primary and

secondary waste treatment) will have different emission

rates, and the barn is not an area source (emissions

occur from vents on the north and south walls).

However, following the arguments in Section 3.2, we

assume that with our CL location sufficiently far from

the farm we are insensitive to these simplifications (we

will return to this question in Section 6).

4.4. Meteorological observations

The WindTrax bLS model requires as input the average

alongwind velocity U (at an arbitrary height), L, z0, and b.
A 3-D sonic anemometer (CSAT-3, Campbell Sci.)

provided this information. The anemometer was placed

at height zson� 2m (height varied slightly from 2002 to

2003), and wind velocity and temperature were sampled at

a frequency of 16Hz.Velocity and heat flux statistics were

transformed into along/across wind coordinates using two

coordinate rotations (yaw and pitch corrections, e.g.,

Kaimal and Finnigan, 1994), and we calculate:

un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0w0h i2 v0w0h i2

4
p

;

L ¼ �
u3
n
T

kvg w0T 0h i
;

z0 ¼
zson

expðUkv=un�cÞ ;

(4)

where u0w0h i and v0w0h i are velocity fluctuation covariances

(see Garratt, 1992), T is the average acoustic air

temperature given by the sonic anemometer, kv is von

Karman’s constant (assumed to be 0.4), g the gravitational
4Here the units of Q are gm�2 s�1, but henceforth we

multiply the areal emission rate by the source area and report

an area-integrated Q with units of g s�1.
constant, w0T 0
� �

the vertical sensible heat flux, and c a

stability correction for the log wind profile (given in Flesch

et al., 2004). The sonic observations also provided velocity

standard deviations ðsu;v;wÞ which we later use in the bLS

model.
5. Data filtering

Not all observation periods provide good emission

estimates. Here we discuss the data filtering process for our

March observations, which span 295 consecutive 15-min

periods (Fig. 6a). Twelve of these periods had no CL

measurement due to the laser and reflector being

misaligned (e.g., heating/cooling of tripods). During

another 94 periods the farm plume was blown away from

the laser path, with no possibility of an emission inference.

This leaves a base of 189 observations. The average

emission rate calculated with these periods is

QbLS ¼ 10:6 g s�1, with a standard deviation in the 15-

min estimates of 118.4 g s�1. This emission rate, which

dramatically overestimates the actual emissions, will drop

considerably as we employ a series of quality filters.

5.1. Removing periods of MOST inaccuracy

Accurate QbLS depends on the accuracy of the MOST-

based relationships that underlie the bLS model. These

are known to be unreliable during extreme stability. For

instance, Flesch et al. (2004) found QbLS predictions

were inaccurate when Lj jp2m. They also found that

unp 0:15m s�1 was associated with inaccuracy. We

therefore remove from our analysis 58 periods with

Lj jp2m or unp 0:15m s�1. This eliminates many

previous QbLS outliers (Fig. 6b) and dramatically drops

the average QbLS from 10.6 to 1.69 g s�1, and gives a

standard deviation of 1.23 g s�1.

5.2. Removing periods of unrepresentative sampling

In some periods the farm plume only ‘‘glances’’ the

laser path. This causes two problems. First is that the

plume edge carries greater ðC=QÞsim uncertainty, since

extreme trajectories at the plume margin are by

definition less predictable. In addition the edge of the

plume is associated with emissions from only the farm

edge, giving a poor estimate of the whole-farm average.

To identify such periods we visually assess the bLS

touchdown catalog for each period (see Fig. 7), and

accept only cases with touchdown coverage in some of

each source area (i.e., barn or lagoons). There are 23

periods identified as having poor touchdown coverage.

Eliminating these removes several QbLS outliers

(Fig. 6c), and the average QbLS drops slightly from

1.69 to 1.59 g s�1 (but with a more significant reduction

in the standard deviation from 1.23 to 0.81 g s�1).
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Fig. 6. Farm ammonia emission rate (QbLS) versus day-of-the-year (DOY) during March: (a) complete data set; (b) removed periods

with u�p 0.15m s�1 or Lj jp2m; (c) further removal of periods with poor touchdown coverage (log scale); (d) further removal of

periods with Lj jp10m. In (d) we also display QbLS calculated using actual turbulence (switched to a linear scale for QbLS).
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5.3. Further removal of unstable periods

Now consider the relationship between our filtered

QbLS and wind velocity U (Fig. 8). With lagoon

emissions we expect a strong positive correlation
between the two (e.g., Denmead et al., 1982; Harper et

al., 2000), and a naturally ventilated barn (describes our

barn much of the time) should exhibit a similar

dependence. On average we see the expected correlation,

but we also see exceptions having a large QbLS but
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Fig. 7. Example touchdown catalogs: (a) and (b) are ‘‘good’’ quality data with touchdowns in all three source areas; (c) a ‘‘poor’’

quality example with no touchdowns in the northwest lagoon; and (d) in very unstable conditions the touchdowns are weighted toward

the northeasterly lagoon.
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low U . These outliers correspond to strongly

unstable conditions ð�10oLo0mÞ. We consider three

possibilities:
1.
 The QbLS outliers are accurate. High emissions (but

low winds) could result from exhaust fans operating

in the barn, overturning of the lagoon effluent, etc.
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Outliers are concentrated on Day 71, when there is

evidence that barn fans were running.
2.
 These estimates are unrepresentative. In strongly

unstable conditions the CL footprint is compressed

nearer the laser path, with touchdowns concentrated

in the northeasterly lagoon (Fig. 7d). Then QbLS is

overweighted toward this lagoon’s emissions (the

primary lagoon) and not representative of the whole-

farm.
3.
 The bLS model is inaccurate. A common presump-

tion is that MOST descriptions are inaccurate for

z4 Lj j. Following Flesch et al. (2004) we eliminated

periods with Lj jp2m (very stable or unstable). But if

a large proportion of trajectories traveling from the

farm to the laser path rise above z ¼ 2m, this limit

may be insufficient. Because our problem dimensions

are larger than Flesch et al., we may need a larger Lj j

threshold.

On the presumption that explanations 2 or 3 are more

likely, we expand our stability rejection criterion from

Lj jp2m to Lj jp10m. The effect of this more stringent

criterion is to reduce by 16 the number of observations

periods (Fig. 6d). The average QbLS then drops from

1.59 to 1.44 g s�1 (with the standard deviation reduced

from 0.81 to 0.57 g s�1).

5.4. Using actual turbulence observations

The bLS model uses the input U , L, and z0 (selected to

insure the correct u�) to calculate the needed wind
statistics, including the standard deviations of velocity

fluctuations ðsu;v;wÞ. Scaling constants bu;v;w are used in

the model, with su;v;w=un ¼ bu;v;w in neutral conditions.

We initially used traditional bu;v;w ( ¼ 2.5, 2.0, 1.25),

which is the WindTrax default. However, we found this

overestimated sw by an average of 10% (Fig. 9). We

therefore re-compute QbLS using bu;v;w adjusted on a

period-by-period basis to reproduce the observed

turbulence (described in Flesch et al., 2004).

The ‘‘tuning’’ of the bLS model has two effects.

Altering sv (crosswind fluctuations) alters the spread of

the touchdown catalog, and some of the previous

‘‘good’’ data becomes ‘‘poor’’ and vice versa (in terms

of a representative sampling of the farm). Overall we

find a gain of ‘‘good’’ data from 92 to 102 periods. The

other effect is a change in QbLS (Fig. 6d), with the

average QbLS reduced from 1.44 to 1.27 g s�1 (with

standard deviation reduced from 0.57 to 0.49 g s�1).
6. Source configuration revisited

In our calculations we have assumed a source

configuration for the farm. Our earlier example (Section

3.2) demonstrated how the sensitivity of QbLS to

configuration details is reduced as concentration is

measured further from the farm. Up to this point we

have assumed our CL observations are far enough to

justify treating the farm as three area sources with

identical areal emission rates. We now re-examine this

assumption with our actual farm configuration. First we

consider a modification of our analysis, to avoid

assuming the barn and lagoons have equal emission

rates.

An inverse-dispersion technique can theoretically

diagnose multiple emission rates if given multiple

concentration observations (e.g. Lehning et al., 1994).
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With three observations we could infer separate emis-

sion rates QB ðbarnÞ, QL�nw, and QL�ne (northwest and

northeast lagoons). We try this by taking three

consecutive 15-min CL observations and assuming

emissions were constant over the 45min, writing:

CL

QB

� �
1
QB þ CL

QL�ne

� �
1
QL�ne þ

CL

QL�nw

� �
1
QL�nw ¼ ðCLÞ1;

CL

QB

� �
2
QB þ CL

QL�ne

� �
2
QL�ne þ

CL

QL�nw

� �
2
QL�nw ¼ ðCLÞ2;

CL

QB

� �
3
QB þ CL

QL�ne

� �
3
QL�ne þ

CL

QL�nw

� �
3
QL�nw ¼ ðCLÞ3;

(5)

where (CL=QB) would be the ratio of concentration to

emission rate for just the barn contribution, (CL=QL�ne)

the relationship for just the northeast lagoon, etc. The

subscripts 1–3 represent consecutive observation periods

(i.e., the CL=Q ratios vary as the wind changes). Each

coefficient is determined by WindTrax.

When we thus analyze the CL record we find Eqs. (5)

do not yield realistic results. In every case at least one

emission source is negative (e.g., in one 45-min period

QB, QL�ne, QL�nw ¼ �10:5; 3:7; 7:4 g s�1) and there is

tremendous temporal variability (e.g., in consecutive

periods QB ¼ �14:7; 9:6; �10:5 g s�1). These inaccura-

cies are the result of an ill-conditioned system: the

inferred Q are extremely sensitive to uncertainties in the

CL=Q coefficients. This can be quantified by the

condition number (Nc), which is interpreted as the ratio

of the uncertainty in calculated Q to the uncertainty in

CL=Q (Gerald and Wheatley, 1984). In this problem Nc

ranges from 100 to 10,000. So if the bLS model

calculates CL=Q with 10% uncertainty (a reasonable

generalization), the uncertainty in Q’s range from

1000% to 100,000%. This sensitivity is due to the

geometry of our source/sensor layout, and the inability

of this layout to differentiate the source components.5

We now consider three scenarios to delineate the

potential error from our original assumption of identical

areal emission rates from the barn and lagoons. The

QbLS is recalculated for 8 h in March 2003 (afternoon-

evening of day 70), but assuming emissions come

exclusively from the barn or a lagoon. These results

are then compared with QbLS assuming equal emission

rates from all three sources. If emissions are only from

the NW lagoon (secondary lagoon), but we falsely

assume three equal emission rates, then the total farm

emissions are underestimated by 43%. With emissions

from only the NE lagoon (primary lagoon) we will

overestimate emissions by 35%. And if the barn is the
5We tried adding more CL observations by lengthening our

analysis interval (up to 5 h), then calculating statistical best-fit

solutions, but this did not improve our results. Perhaps if wind

direction had changed more dramatically between periods we

may have had more success in differentiating emissions.
only source, emissions are overestimated by only 2%.

These worse-case scenarios show a potential error of

order 40%, which indicates our measurement location

should ideally have been further from the farm.

In our opinion ammonia emissions could not realis-

tically be confined to one source area. Harper et al.

(2004) for example, found equal emissions from the barn

and lagoon of a swine farm in North Carolina. We

suspect emissions are concentrated in the barn and the

primary lagoon (NE lagoon). Taking more realistic

relative emissions of total (QB, QL�ne, QL�nw) ¼ (2, 2, 1)

means our assumption of a homogeneous source would

cause an overestimation in emissions by 9%. And the

more emissions are weighted toward the barn, the more

accurate QbLS becomes.
7. Farm emissions

We calculate ammonia emissions from the farm in

March and July using the data filtering process

described earlier: we eliminate periods with

u�p 0.15m s�1, Lj jp10m, or when CL is unrepresen-

tative of the whole-farm plume. We also use the

observed su;v;w for each period to modify the bLS model

to reproduce the measured turbulence.

In March we have 102 observations of QbLS taken

over four days (Fig. 10), with emissions ranging from 0.5

to 2.8 g s�1. There is the strong correlation between

emissions and wind speed discussed earlier, and we see a

consistent mid-afternoon emission peak of 2–3 g s�1.

Emissions never drop below 0.5 g s�1, perhaps because

we eliminate low wind periods in our filtering, or maybe

this represents a base emission rate from the animals.

For all 102 observations the average QbLS is 1.27 g s�1.

Because our filtering preferentially removes nighttime

periods, this average is weighted toward daytime

conditions. To remedy this we approximate missing

observations using the linear QbLS versus U relationship

shown in Fig. 10c, and use U to estimate Q. For a 72 h

subset we find an average QbLS ¼ 0:9 g s�1, or 6.5 g

animal�1 day�1.

Our July dataset spans only 15.5 h (early evening

through late morning), with emissions ranging from 0.6

to 6.3 g s�1 (Fig. 10b). Again we see a strong correlation

between QbLS and U . Interpolating and extrapolating

from these observations using the polynomial QbLS

versus U relationship in Fig. 10c, we calculate a 24-h

average QbLS ¼ 2:2 g s�1, or 16 g animal�1 day�1 . This

is a little over twice the March value (but from an

admittedly small number of observations). While we see

higher overall emissions in July than March, in both

cases the lowest emission rate is about 0.5 g s�1, an

indication of a base emission rate.

How do these emissions compare with other studies?

Our March and July averages of 6.5 and 16 g animal�1
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day�1, respectively, compare with generic emission

factors for swine of 25.2 g animal�1 day�1 estimated

by Battye et al. (1994) for the USA, 19.2 g animal�1

day�1 estimated by Doorn et al. (2002) for the USA, and

14.7 g animal�1 day�1 estimated for Europe by Asman
(1992). Our lower values are consistent with smaller

nursery animals. The emissions are also broadly

consistent with the observations of Harper et al. (2000)

who found annual rates of 6.3 g animal�1 day�1 from

the lagoon of a farrow-to-finish farm in Georgia (no
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barn emissions). We interpret this consistency as a broad

indication of the success of the bLS technique.
8. Summary and conclusions

We demonstrated the application of an inverse–dis-

persion technique to estimate ammonia emissions from a

swine nursery farm. We argued that use of an idealized

dispersion model, and an idealized treatment of the farm

source configuration, is justified for this site. An

important part of our analysis was identifying periods

when QbLS was likely in error, because of either the

potential for bLS model errors or unrepresentative

concentration observations. After removing these ques-

tionable periods we calculated ammonia emissions of 6.5

and 16 g animal�1 day�1 in March and July, respec-

tively. These values are consistent with other studies.

We found the bLS technique was easy to apply. The

open-path laser was simple to use, and all necessary

meteorological data were supplied by a 3-D sonic

anemometer, easily placed on the surrounding land-

scape. Because the terrain was uniform, positioning the

laser and anemometer was straightforward. Having a

predominant wind direction also helped identify good

measurement locations. In our experiment the data-

quality filters resulted in the removal of more than half

our observations, which highlights the importance of

‘‘gap-filling’’ procedures to approximate missing emis-

sions when applying the technique in long-term studies.

The suitability of the technique in other situations will

depend on the specific farm setting. Complex terrain

would make the simple bLS model less defensible, and

proper measurement locations less clear. And if the farm

is surrounded by other emission sources it may become

impossible to separate the farm tracer plume from a

complex background pattern. But if one avoids such

complex settings, then the inverse–dispersion technique

can be an easy-to-use method for estimating whole-farm

emissions.
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