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Abstract

It is shown that the ‘bleed velocity’ through the ‘fabric’ of a thin windbreak or shelterbelt is practically insensitive to

the existence of nearby holes or gaps in the fabric. This provides the basis for a straightforward extension of an earlier

formula for particle ‘scrubbing’ by a thin windbreak, to account for irregularities of the filtering vegetation or mesh.

r 2005 Elsevier Ltd. All rights reserved.
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1The resistance coefficient kr of a mesh or fabric is here

defined by DP ¼ krrU2, where DP is the pressure drop across

the material when it is mounted so as to impede a uniform,

confined flow of speed U and density r. Please note that many
1. Introduction

This note will extend the analytical theory of Raupach

et al. (2001) for the filtering of a particulate-loaded

airstream by a laterally-uniform, porous windbreak. Its

focus therefore lies on the wind velocity through a thin,

natural or artificial windbreak, ‘thin’ signifying that

variation of the wind across the shelter (X=2pxpX=2)

may for practical purposes be neglected because X5H,

where H is the windbreak height. As an ‘internal’

property of the windbreak flow, albeit an important one

because it sets the overall level of windbreak drag, the

‘bleed’ velocity at the windbreak is not normally of

practical interest. However it also controls the filtering

effect of a windbreak on a particle-laden airstream, for

the particle deposition rate per unit crosswind distance

(y) is (Raupach et al.)

DbI
Z H

z0

Uð0; zÞðC0 � C1Þdz, (1)

where C0;C1 are the particle concentrations in the air

upwind and downwind of the thin windbreak (which is
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centred at x ¼ 0), z0 is the surface roughness length and

Uð0; zÞ is the profile of the (mean) bleed velocity.

Exploiting the (inexact) similarity between the transfer

rates of momentum and particulate mass to the wind-

break ‘fabric’, Raupach et al. reframed this expression

for the deposition flux in terms of a ‘harmonic mean

bleed velocity’

U2
b ¼

1

H

Z H

z0

U2ð0; zÞdz (2)

in terms of which the windbreak drag force per unit

crosswind length is

Fb ¼ rkrU
2
bH (3)

(r is the air density and kr is the dimensionless resistance

coefficient1 of the windbreak ‘fabric’, i.e. assemblage of

leaves and branches, or porous mesh). The linkage

between equations (1) and (3) is the aerodynamical basis
d.

other authors (including Raupach et al.) define kr by

DP ¼ kr
1
2
rU2, but (for consistency with the author’s earlier

work) here the 1=2 will be omitted.
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for the key point that ‘‘the total deposition of par-

ticles to a windbreak is determined by a trade-off

between particle absorption and throughflow. . . the

windbreak must be dense enough to absorb particles

efficiently, but sparse enough to allow some particles

to flow through and be trapped.’’ An interesting

question is the extent to which this trade-off can be

manipulated to achieve a more complete scrubbing of

the airstream, by adjustment of the windbreak char-

acteristics, e.g. its ‘‘outline’’ (H;X ), the depth H1 of gap

or trunk space, and the internal structure as specified by

the element surface area density a ½m�1� and drag

coefficient ce, which determine the bulk optical porosity

t and effective resistance coefficient. Grunert et al.

(1984) wrote that ‘‘aerosol protection plantations

must. . . have a looser and wider construction to

promote throughflow and filtering than wind protection

plantations.’’

The formula given by Raupach et al. for efficiency of

particle scrubbing is appropriate only for a ‘‘thin’’

windbreak, and consequently is unable to address the

question of an optimal configuration (X ; a; ce, etc).

However here their ‘thin windbreak’ theory of particle

scrubbing will be extended in a simple way to account

for the influence of gaps in the windbreak, such as (e.g.)

the case of a single line of trees with a substantial

trunk space. A surprising fact that will be demonstrated

is that for given H ; kr and given upwind flow (fric-

tion velocity u�), the bleed velocity Uð0; zÞ is indifferent

to the existence and depth H1 of a gap. In Section (2)

this will be proposed on the basis of a highly idealized

approximate analytical solution of a linearized vorti-

city equation valid for the case kr51, and confirmed

by realistic numerical solutions of the non-linear

mean momentum equations. On the basis of this

finding, in Section (3) the Raupach et al. result for

particle deposition rate to the windbreak will be

extended in terms of a re-defined harmonic mean

bleed velocity.
2In the case of a uniform windbreak without gaps,

QðzÞ ¼ sðz � HÞ, where sðz � HÞ is a unit dimensionless step

function at z ¼ H.
3That this is so is evident from the demonstrated insensitivity

of the computed flow in the region x=Ht2 to the closure

chosen for the Reynolds stresses (Wilson, 1985) and from the

previously mentioned studies of the magnitudes of terms in the

U-momentum equation.
2. Influence of a gap on the bleed flow

It may be helpful to emphasize at the outset that this

paper is not at all concerned with the ‘shelter’ provided

by a windbreak, i.e. the velocity reduction in its wake,

but primarily with the velocity field at the windbreak,

and (only to the extent it affects the bleed velocity) with

the velocity further upwind: i.e., the domain of interest is

xp0. This focus largely justifies (and simplifies the

interpretation of) the analysis to follow, which concerns

the region of the flow where an equilibrium surface layer

is disturbed by the perturbation pressure field its own

interaction with the windbreak generates. As far as the

streamwise momentum budget is concerned, in this

upwind region vertical advection and the Reynolds
stress gradients are weak, specifically in relation to

streamwise advection and in relation to the pressure

gradient (e.g. Wang and Takle, 1997, Fig. 3; Wilson and

Yee, 2003, Fig. 5). Thus these latter forces, in combina-

tion with the direct drag of the barrier, dominate the

flow in the region of interest to us. The approximate

analytical solution now to be derived will capitalize on

the dominance of these forces.

Assume the mean wind blows normal to an infinitely-

long windbreak, so that it suffices to consider a two-

dimensional mean flow with streamwise and vertical

components (U ;W ). The windbreak material will be

assumed to have bulk resistance coefficient kr that does

not vary across its section (for a natural windbreak with

uniform leaf area density a, the effective resistance

coefficient kr�ceaX ). To a first approximation the

influence of a thin windbreak on the flow about it may

be represented by a momentum sink krU
2 in the

streamwise mean momentum equation, localized at the

windbreak, viz. (symbolically)

qU

qt
þ 
 
 
 ¼ 
 
 
 � krU

2dðx � 0ÞQðzÞ, (4)

where dðx � 0Þ is the delta-function localizing the drag

to the windbreak location x ¼ 0, and QðzÞ localizes the

drag on the height axis.2 To be more specific, appro-

priate steady-state mean momentum equations for

neutral flow about a porous barrier are

q
qx

ðU2 þ u02 þ P=rÞ þ
q
qz

ðUW þ u0w0Þ

¼ �krU
2dðx � 0ÞQðzÞ,

q
qx

ðUW þ u0w0Þ þ
q
qz

ðW 2 þ w02 þ P=rÞ ¼ 0, ð5Þ

where P is the local disturbance in mean pressure caused

by interaction of the wind with obstacles, and u0w0 (etc.)

are components of the Reynolds stress tensor. Accord-

ingly the conservation equation for the mean vorticity

O ¼ Uz � W x is

U
qO
qx

þ W
qO
qz

¼ �krdðx � 0Þ Q
qU2

qz
þ U2 qQ

qz

� �
þ R,

(6)

where R collects the terms arising from the Reynolds

stresses, and will be neglected since it plays only a small

role on the perturbation flow in the upwind region.3

Now if we decompose the mean velocity relative to the
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Fig. 1. Analytical solutions for the fractional velocity pertur-
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upwind flow

U ¼ U0 þ DU ¼ U0 þ kru,

W ¼ DW ¼ krw ð7Þ

and introduce a perturbation streamfunction c in terms

of which the velocity and vorticity perturbations are

u ¼ �cz,

w ¼ cx,

o ¼ r2c, ð8Þ

the resulting perturbation vorticity equation, to first

order in the small parameter kr, is

U0
qo
qx

þ w
q2U0

qz2

¼ �dðx � 0Þ U2
0

qQ

qz
þ QðzÞ2U0

qU0

qz

� �
. ð9Þ

Now neglect background shear so that U0 ¼ const, and

specify a uniform windbreak spanning H1pzpH by

writing

QðzÞ ¼ sðz � H1Þ � sðz � HÞ, (10)

qQ

qz
¼ dðz � HÞ � dðz � H1Þ. (11)

Henceforth considering all velocities to have been

normalized on U0 and all lengths on H, Eq. (9) reduces

to

r2cx  r2w ¼ �dðx � 0Þ½dðz � 1Þ � dðz � ‘Þ�, (12)

where ‘ ¼ H1=H. The Laplacian of the vertical velocity

perturbation vanishes everywhere except at the upper

and lower extremities of the windbreak. The Green’s

function for the Laplacian in a two-dimensional

unbounded space4 is

Gðx� xsÞ ¼
1

2p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xsÞ

2
þ ðz � zsÞ

2

q
(13)

and so the vertical velocity perturbation is readily

derived as

w  cx ¼
1

4p
ln

x2 þ ðz � ‘Þ2

x2 þ ðz þ ‘Þ2
þ ln

x2 þ ðz þ 1Þ2

x2 þ ðz � 1Þ2

� �
, (14)

where for each vorticity source an image has been

added to ensure w ¼ 0 along z ¼ 0. Integrating w.r.t. x

and differentiating w.r.t. z gives the alongwind velocity
4Free solution of r2G ¼ dðx � xsÞdðz � zsÞ for a point source

at x ¼ xs.
perturbation

u ¼
1

2p
tan�1 x

z � 1
� tan�1 x0

z � 1

h

� tan�1 x

z þ 1
þ tan�1 x0

z þ 1

�

þ
1

2p
tan�1 x

z þ ‘
� tan�1 x0

z þ ‘

�

� tan�1 x

z � ‘
þ tan�1 x0

z � ‘

i
, ð15Þ

where the constant of integration x0 is defined such that

uðx0; zÞ ¼ 0 (for the solutions to be shown, x0 ¼ �100).

Fig. 1(a,b) show this solution for the cases

‘ ¼ H1=H ¼ 0:2; 0:4. Transects through the windbreak

fabric show deceleration, while transects under or over

the windbreak show acceleration, the strongest accel-

eration occurring on the transect through a narrow gap.

In interpreting these solutions one must recall that the

influences of background shear and turbulent shear

stress have been neglected, for only the three (locally)

dominating terms have been retained (streamwise

advection, pressure gradient and drag on the wind-

break). Therefore the only agency for cross-stream

‘‘communication’’ of the flow disturbance is the pressure

force, and the only asymmetry between transects at

distances �0:1H above and below the windbreak is the
bation u ¼ ð1=krÞDU=U0 around a very porous windbreak,

showing transects at several z=H as a function of gap depth

‘ ¼ H1=H.
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Fig. 2. Computed profiles of normalized mean windspeed

Uð0; zÞ=U0H at and above a porous windbreak fence whose top

is at fixed height H ¼ 1:2 m (the reference velocity U0H 

Uð�1;HÞ is the mean windspeed far upwind, at z ¼ H). (a)

case of a gap of depth H1=H ¼ 0:5, the solid line labelled kr ¼ 0

showing the upwind profile, and the alternating dashed and

solid lines showing the effect of sequentially increasing

resistance coefficient kr ¼ ð0:5; 1; 2; 4; 8Þ. (b) case of fixed kr ¼

2 and varying gap depth H1=H ¼ 0; 1
4
; 1

2
.

6To within a modest level of error or uncertainty that stems
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presence of the ground, which has been treated as a no-

leak/free-slip surface (qu=qz ¼ w ¼ 0). What is most

important (Fig. 1(c)) is that the bleed velocity on any

transect z=H, i.e. the velocity at the windbreak, is

insensitive to the existence and depth of the gap:

irrespective of the gap width and for all ‘pzp1 the

perturbation bleed velocity

1

kr

DU

U0
¼ �

1

2
. (16)

The unequivocal simplicity of this asymptotic (small

kr) result5 suggests that in the case of a more general and

(possibly) irregular form of windbreak gap, such as an

opening on the crosswind (y) axis or an irregularity in

the height or outline of the shelter, to a first

approximation the bleed velocity should be indifferent

to the existence and geometry of the gap: on any mean

streamline passing through the windbreak fabric (as

opposed to above or below the fabric or through any

gap) the bleed velocity according to this simplified

treatment is U0ð1 � kr=2Þ. To the extent that this proves

true for practical values of kr (i.e. order 1), it will permit
5It is interesting that Taylor (1944; Eq. 3) obtained an

equivalent result for the velocity perturbation immediately

upstream of a porous plate exposed in an unbounded laminar

flow, by treating the barrier as a source of fluid volume.
an easy generalization of the Raupach et al. theory for

particle filtration.

2.1. Non-linear numerical solution for the bleed flow

The above analytical solution captures the dominant

influences on the bleed flow provided kr51, but to verify

that the main result holds in the full complexity of the

problem (finite kr implying non-linear advection; no-slip

imposed on ground, implying background shear; influ-

ence of the Reynolds stresses retained) one may examine

numerical solutions of the full steady-state mean

momentum equations (5). The numerical method used

here has been described at length by Wilson (1985, 2004)

and, for the case of neutrally-stratified flow oriented

perpendicular to a windbreak, solutions for the

mean wind have been shown to be in good agreement6

with field measurements by Bradley and Mulhearn

(1983; H=z0 ¼ 600; kr ¼ 2:0) and others. Simulations

have here been performed using the second-order

turbulence closure of Rao et al. (1974) on a domain

spanning �60px=Hp112, z=Hp47 (‘standard domain’

of Wilson, 1985, 2004), with uniform resolution

Dx=H ¼ 1, Dz=H ¼ 0:1.

Fig. 2(a,b) gives the results of simulations of the

velocity profile at the windbreak for the case H ¼ 1:2 m,

z0 ¼ 0:002 m (H=z0 ¼ 600). Fig. 2(a) shows that the

bleed velocity decreases monotonically as the resistance

coefficient is increased, and that a gap under the fence

results in a jet where the peak speed exceeds the speed (at

the same height) far upstream. The less predictable (and

in the present context, more important) point is that

Fig. 2(b), showing simulations with fixed kr ¼ 2 and

three gap-depths H1=H ¼ ð0; 0:25; 0:5Þ, demonstrates

that the bleed velocity profile (in the range H1pzpH)

is indifferent to the existence and depth of the under-

lying gap. This is consistent with the simplistic analytical

theory outlined above, and it raises an interesting

question: if the bleed velocity is indifferent to a gap

beneath the windbreak, might it also be indifferent to a

‘gap’ above the windbreak, that is, might the bleed

velocity be invariant relative to the height of the

windbreak? Fig. 3 indicates that to a good approxima-

tion indeed it is7, at least in the case of variations in H

covering a range such that H=z0X300. Thus we have the

surprising result that bleed velocity through a thin

windbreak, which one might have expected to respond

to many or all of the governing (‘external’) scales,

apparently is set by (or responds to) only (a) the overall
from the arbitrariness (and imperfection) of the turbulence

closure and computational resolution.
7There must be some logical limit to this invariance, for as

H ! 0 we end up without any windbreak through which the

wind ‘bleeds’.
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under the windbreak (windbreak height H ¼ 1:2 m, resistance
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ratio H=z0 ¼ 600). The drag decreases with increasing gap

width H1=H principally because the bleed velocity (Ub,
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area.

8Though as an aside, for sufficiently small kr, they probably

would be very similar at xp0. A comparison of Figs. 2 and 3 of

Wilson et al. (1990), which are (no-gap) windbreak velocity

transects according to the (same) linearized analytic solution

and according to the non-linear numerical simulation, would

suggest otherwise. However subsequent work revealed that an
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velocity (as indexed by friction velocity u�) and (b)

the resistance coefficient of the fabric. It is this result

(whose validity is here supported by two lines of

argument) that justifies a conjecture that bleed velocity

will be invariant no matter what the form of the gaps in a

windbreak—provided only that these be ‘macroscopic’

gaps, i.e. outright holes or free passages in the wind-

break having a categorically larger size than the pores of

the windbreak mesh.

In the case that our windbreak ‘gap’ is continuous on

the crosswind (y-) axis, we may modify Eqs. (2) and (3)

so that the harmonic mean bleed velocity is defined

U2
b ¼

1

H � H1

Z H

H1

U2ð0; zÞdz (17)

and the drag

Fb ¼ rkrðH � H1ÞU
2
b. (18)

Fig. 4 shows that while the drag Fb decreases (as

expected) with increasing gap width H1=H, to a good

first approximation Ub is independent of H1=H, as

earlier shown. Interestingly these simulations showed

that over a wide range in parameter space

(0pH1=Hp0:5; 0:5pkrp8) the linear-mean bleed ve-

locity

Ub;lin ¼
1

H � H1

Z H

H1

Uð0; zÞdz (19)
differs negligibly from the harmonic mean bleed

velocity. Thus the shape factor

ns ¼
Ub;lin

Ub

(20)

introduced by Raupach et al. can be set to unity with no

loss of accuracy, reflecting the fact that the mean

velocity at the windbreak is (roughly) height indepen-

dent over the bleed-span H1pzpH, due to the strong

feedback provided by the force �krU
2 which tends to

flatten the bleed velocity profile.

In concluding this section it may be helpful to clarify

that it is not being argued here that these non-linear

solutions to the momentum equations reproduce exactly

the bleed velocity profile given by the analytical

solution8; this would be astonishing given their differing
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assumptions. The point is that in the region xp0 the

analytical solution is a plausible qualitative idealization,

and suggests (or even ‘explains’) the pattern subse-

quently discerned in the full solution. . . namely that the

bleed velocity profile is rather insensitive to the depth of

a windbreak gap. There is no reason to suppose this

qualitative harmony of the analytical and numerical

solution rests on the particular parameter choices (e.g.

H=z0) made for the latter.
3. Particle entrapment by a thin windbreak

Raupach et al. considered the case of an approaching

flow that is uniformly seeded with single-sized particles

(diameter 1mmtdpt100mm), and normally-incident on

a long, straight and vertically-uniform windbreak. They

gave a relationship between the mean particle concen-

tration C on the downwind side (C1) and the upwind

loading (C0) by integrating across the windbreak a

simplified version of the mass conservation equation,

namely

U
qC

qx
¼ �agpC, (21)

where gp is the particle deposition velocity (deposition to

the ground has been neglected relative to deposition

onto vegetation, a good approximation if one is

considering a rather narrow and dense windbreak, and

turbulent transport of particles by the wind has been

neglected relative to transport by the local mean wind

U). Taking a and gp=U as constant along a trajectory

through the windbreak,9 Eq. (21) can be integrated to

obtain the concentration reduction ratio

C1

C0
ð¼ sÞ ¼ exp �

amXgp

U

� �
, (22)

where m\1 is the ‘‘meander factor’’.
(footnote continued)

uncorrected ‘equilibrium drift’ (i.e. small spurious streamwise

gradient in computed properties that arose even with kr ¼ 0)

had contaminated the numerical solution given for the case

kr ¼ 0:05 (this drift was entirely negligible relative to the flow

disturbance for simulations with realistic kr). Furthermore it

turns out that for small kr, windspeed reduction curves from

numerical simulations very closely match a more complex

linearized analytic solution (as yet unpublished); in this latter

the velocity perturbation, driven by the pressure field (Eq. (29),

loc. cit.) and obeying the no-slip law on ground, decays in the

wake of the windbreak by the action of the perturbation shear

stress, which are modeled using the unperturbed eddy viscosity.
9Assuming gp=U constant restricts application of the theory

to particles of a sufficient size that the mechanism of Brownian

diffusion plays a negligible role in deposition onto the fabric,

relative to impaction. See Raupach et al. for more detail.
Note that nothing prevents one from regarding the

factors a; gp=U as dependent on height, in so far as the

validity of Eq. (22) is concerned: thus, if we had an

upwind profile C0ðzÞ of particle concentration, and

height variation of any or all of a; gp;U , Eq. (22) for

the concentration ratio remains valid. However if we

restrict ourselves to the uniformly seeded case, and

assume the area density and the factor gp=U to be

constant then we may simplify Eq. (1) for deposition to

Db ¼ ðC0 � C1Þ

Z H

H1

Uð0; zÞdz,

¼ C0ð1 � sÞnsUbðH � H1Þ, ð23Þ

where the presence of a gap has been accounted for, and

(as previously noted) the shape factor ns � 1. Evidently

the ratio of the particle- and momentum-fluxes to the

windbreak is

Db

Fb

¼
1

rkr

UbðC0 � C1Þ

UbUb

, (24)

in which Ub masquerades as both the bulk conductance

(of the two flow properties to the windbreak) and—in

the case of momentum—as the entity conducted.

The important point is that it follows from Fig. (4)

that the normalized deposition flux

Dp

U0H ðH � H1ÞC0
�

Ub

U0H

ð1 � sÞ (25)

is invariant relative to the depth of any windbreak gap,

and the empirical formula given by Raupach et al.

Ub

U0H

¼
Gb1

kr þ Gb1k1

� �1=2

(26)

ðGb1 ¼ 1:07; k1 ¼ 1:5Þ remains valid irrespective of the

introduction of a gap. Thus as a consequence merely of

having re-defined the harmonic mean bleed velocity and

the scale for the particle flux, the formula of Raupach

et al. for the normalized deposition rate of particles to a

thin windbreak carries over directly to cases where there

are gaps in the windbreak.
4. Conclusion

Although the present study extends the theory of

particle deposition to the specific case of a windbreak

gap that is continuous on the crosswind axis, i.e. a trunk

space or its equivalent, it seems warranted to conjecture

that a generalization to arbitrarily irregular gaps (fully

three-dimensional flow) would be valid: if so the bleed

velocity would be substantially indifferent to the

geometry of the gap(s) and it would merely be necessary

to appropriately redefine the reference flux of particles,

i.e. generalize Eq. (25) by altering the denominator
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U0H ðH � H1Þ C0 to exclude that part of the incident

particle flux that impinges on the gap(s).
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