EAS270, "The Atmosphere" 2^{nd} Mid-term Exam 4 Nov. 2015

<u>Professor</u>: J.D. Wilson <u>Time available</u>: 50 mins <u>Value</u>: 25%

No formula sheets; no use of tablet computers etc. or cell phones. Formulae/data at back.

A. Multi-choice $(30 \ge 5/6 \rightarrow 25 \%)$

- 1. Referring to Figure (1), which statement is **false**? (recall Q_G is the storage term, i.e. heat added to the soil, air and vegetation below the reference plane).
 - (a) $500 600 \,\mathrm{W \, m^{-2}}$ is a plausible value for the maximum in Q^*
 - (b) Time mark A denotes the time at which energy begins to go into storage
 - (c) At time **B**, net radiation Q^* is balancing the sum of the latent and sensible heat fluxes
 - (d) At time 24 h, net longwave radiation L^* is negative, and balanced by heat released from storage (negative Q_G)
 - (e) Over the 24 h cycle, periods of positive and negative energy flux to storage (Q_G) partially or largely cancel
- 2. Which statement in regard to the type of local energy budget indicated by Figure (1) is **false**?
 - (a) each of Q^*, Q_H, Q_E is a vertical energy flow
 - (b) away from solid surfaces, the transport mechanism for sensible heat is convection
 - (c) Q_G is the rate at which energy goes into storage below the reference plane
 - (d) it is assumed that the site is horizontally uniform (horizontal energy flows are ignored)
 - (e) times of sunrise & sunset coincide with sign changes in net radiation $(Q^* \equiv K^* + L^*)$
- 3. Referring to Figure (2), which statement is **false**?
 - (a) A,B,C lie in the shortwave radiation band
 - (b) D,E lie in the longwave radiation band
 - (c) The atmosphere is almost completely transparent at C
 - (d) Region C is known as the "atmospheric window"
 - (e) The high absorbtivity at $\lambda > 20 \,\mu\text{m}$ is due to greenhouse gases
- 4. Again referring to Figure (2), in order for a radiometer on a satellite to "see" the ground at night, it should be sensitive to radiation at (or near) which wavelength?
 - (a) A
 - (b) B
 - (c) C
 - (d) D
 - (e) E

- 5. Rayleigh scattering is ______, while Mie scattering is ______
 - (a) wavelength selective and caused by air molecules (versus) non-selective with respect to wavelength and caused by aerosols
 - (b) non-selective with respect to wavelength and caused by aerosols (versus) wavelength selective and caused by air molecules
 - (c) wavelength selective and caused by aerosols (versus) non-selective with respect to wavelength and caused by air molecules
 - (d) responsible for the whiteness of sunlit clouds (versus) responsible for the blueness of diffuse sky light
- 6. At the time of the southern hemisphere summer solstice ($\delta = -23.5^{\circ}$), what is the noon solar elevation at latitude $\phi = +23.5^{\circ}$ (which is in the northern hemisphere)? (See given equation)
 - (a) 90°
 - (b) 66.5°
 - (c) 43°
 - (d) 23.5°
 - (e) 0°
- 7. At the time of the southern hemisphere winter solstice ($\delta = +23.5^{\circ}$), what is the noon solar elevation at latitude $\phi = -66.5^{\circ}$ (which is in the southern hemisphere)? (See given equation)
 - (a) 90°
 - (b) 66.5°
 - (c) 43°
 - (d) 23.5°
 - (e) 0°
- 8. If earth's average surface temperature were to increase, the amount of radiation energy emitted from its surface would _____ and the wavelength (λ_{max}) of peak emission would shift towards _____ wavelengths.
 - (a) increase, longer
 - (b) increase, shorter
 - (c) decrease, longer
 - (d) decrease, shorter
 - (e) increase, redder

- 9. Suppose the atmosphere transmitted the solar beam, whose strength above the atmosphere is $S_0 = 1365 \,[\mathrm{W \, m^{-2}}]$, without absorbtion or scattering. Under that assumption, what is incoming flux density of solar beam radiation across a *horizontal* reference plane at the surface ("S") at latitude 45° north (or south) at the time of the equinox? (See given equation)
 - (a) 1365
 - (b) 965
 - (c) 683
 - (d) 318
 - (e) 0
- 10. To emphasize the climatic importance of the atmosphere, a hypothetical "radiative equilibrium temperature" $T_{\rm E}$ (= 255 K) can be calculated as the mean temperature of an isothermal earth (of radius R) that is devoid of (i.e., lacking, without) an atmosphere. $T_{\rm E}$ is computed by balancing 70% absorption of the solar beam over area πR^2 against longwave loss from area $4\pi R^2$. Which option correctly names the 70% factor?
 - (a) shortwave absorbtivity
 - (b) shortwave reflectivity (albedo)
 - (c) shortwave transmissivity
 - (d) longwave emissivity
 - (e) shortwave emissivity
- 11. Suppose two (otherwise identical) blackbody surfaces are at Kelvin temperatures of respectively T, 2T. The hotter surface radiates energy at a rate that is _____ times the rate of the cooler surface. [Hint: $(a b)^4 = a^4 b^4$.]
 - (a) 1/2
 - (b) 2
 - (c) 1/4
 - (d) 4
 - (e) 16
- 12. Suppose on a sunny summer afternoon the net radiation over a flat field of bare soil were $Q^* = 500 \text{ W m}^{-2}$, and the sensible and latent heat fluxes were $Q_H = 180$, $Q_E = 300 \text{ W m}^{-2}$. What was the soil heat flux Q_G (alternatively known as the "storage" term ΔQ_s)?
 - (a) 980 W m^{-2}
 - (b) 480 W m^{-2}
 - (c) 120 W m^{-2}
 - (d) 20 W m^{-2}
 - (e) -980 W m^{-2}

- 13. Which set of properties are all constant in unsaturated, adiabatic motion of an air parcel?
 - (a) specific humidity q and potential temperature θ
 - (b) specific humidity q and temperature T
 - (c) mixing ratio r and virtual temperature T_v
 - (d) vapour pressure e and temperature T
 - (e) saturation vapour pressure $e_*(T)$ and temperature T

14. If vapour pressure e = 1.1 kPa and temperature $T = 23^{\circ}$ C, give the absolute humidity ρ_v .

- (a) $8 \times 10^{-3} \text{ kg m}^{-3}$
- (b) $8 \times 10^{-6} \text{ kg m}^{-3}$
- (c) 0.1 kg m^{-3}
- (d) $1 \times 10^{-4} \text{ kg m}^{-3}$
- (e) $8 \,\mathrm{g \, kg^{-1}}$
- 15. What is the relative humidity of air having temperature $T = 6^{\circ}$ C and vapour pressure e = 7 hPa?
 - (a) 95%
 - (b) 75%
 - (c) 65%
 - (d) 55%
 - (e) 45%
- 16. What option is closest to the dewpoint T_d of air whose temperature and relative humidity are $T = 19^{\circ}$ C and 65%?
 - (a) $28^{\circ}C$
 - (b) $23^{\circ}C$
 - (c) 19°C
 - (d) $12^{\circ}C$
 - (e) $4^{\circ}C$
- 17. Referring to Figure (3), what pressure and temperature correspond to the point of intersection of isotherms and isobars within the heavy circle **O**?
 - (a) 300 Pa, 18°C
 - (b) 300 hPa, 18°C
 - (c) 300 kPa, 18°C
 - (d) $300 \text{ hPa}, -10^{\circ}\text{C}$
 - (e) $300 \text{ hPa}, -25^{\circ}\text{C}$

- 18. Referring to Figure (3), what is the correct stability category for the layer below 700 hPa?
 - (a) absolutely unstable
 - (b) absolutely stable
 - (c) conditionally unstable
 - (d) neutral with respect to unsaturated adiabatic motion
 - (e) neutral with respect to saturated adiabatic motion
- 19. Referring to Figure (3), which level is closest to the LCL for lifted surface parcels? (Hint: Use Normand's Rule).
 - (a) 925 hPa
 - (b) 850 hPa
 - (c) 700 hPa
 - (d) 500 hPa
 - (e) 250 hPa
- 20. Referring to Figure (3), locate the dry adiabat labelled **a**: by definition, this is a line of constant potential temperature θ . If the reference pressure is taken as 1000 hPa, then what value for the potential temperature would you assign to dry adiabat **a**?
 - (a) $5^{\circ}C$
 - (b) $0^{\circ}C$
 - $(c) 5^{\circ}C$
 - (d) -10° C
 - (e) -20° C
- 21. Referring to Figure (4), which statement is false or without justification?
 - (a) the LFC lies at the level marked "z"
 - (b) this is an idealized summer daytime scenario
 - (c) the middle layer is well mixed
 - (d) the surface layer is absolutely unstable
 - (e) the upper layer is an inversion
- 22. Referring to Figure (5), which option best describes the buoyancy force F_B that will act on a parcel of dry air that rises from the surface into the mixed layer?
 - (a) $F_B = 0$, no buoyancy force
 - (b) $F_B > 0$, downward buoyancy force
 - (c) $F_B > 0$, upward buoyancy force
 - (d) $F_B < 0$, downward buoyancy force
 - (e) $F_B < 0$, upward buoyancy force

- 23. On a certain summer afternoon cumulus cloud base height (which identifies the Lifting Condensation Level, LCL) was rather low, at $z_{\rm LCL} = 375 \,\mathrm{m}\,\mathrm{AGL}$. The surface dewpoint was $T_{\rm d} = 13^{\rm o}\mathrm{C}$. What was the surface temperature T?
 - (a) 10°C
 - (b) 13°C
 - (c) 16°C
 - (d) 19°C
 - (e) 21°C
- 24. Referring to Figure (6), assume that the vertical distance from the LCL to the crest of the mountain is h = 500 m, and that the SALR = $\Gamma_m = -0.004 \,\mathrm{K \,m^{-1}}$. When the parcel arrives back at its starting level at the base of the lee slope, its final temperature (T_1) will differ from the temperature T_0 it had before it began its ascent. Choose the option correctly giving the temperature change $T_1 T_0$, computed according to the formula

$$T_1 - T_0 = |\Gamma_d - \Gamma_m| \times h$$
.

- (a) -3 K
- (b) +3 K
- (c) -5 K
- (d) +5 K
- (e) +15 K

For the remaining questions, please refer to Figures (7, 8).

- 25. Referring to Figure (7), what is the heavy dotted line running from northwest B.C. into the Yukon?
 - (a) ridge
 - (b) trough
 - (c) dry adiabat
 - (d) moist adiabat
 - (e) ELR
- 26. Referring to Figure (7), what was the 1000-500 hPa thickness Δz in Edmonton (the station in central Alberta)?
 - (a) 571 m
 - (b) 571 dam
 - (c) 552 dam
 - (d) 558 dam
 - (e) $7.1^{\circ}C$

- 27. Referring to Figure (7), what is the meaning of the stippled band?
 - (a) thickness in the range 534-540 dam
 - (b) freezing rain likely to occur
 - (c) extreme cold
 - (d) extreme warmth
- 28. Referring to Figure (8), which statement regarding conditions at the station enclosed by the dotted square is **false**?
 - (a) temperature-dewpoint spread $T_{dd} = T T_d = 0$
 - (b) wind is an ESE of about $5 \,\mathrm{m\,s^{-1}}$
 - (c) pressure is rising
 - (d) sea-level corrected pressure is 1019.1 hPa
 - (e) sky cover is 6/8
- 29. Referring to Figure (8), which would be your best guess as to surface wind conditions at point marked **X** (below and to the left of the **H** on the Alberta-B.C. border)?
 - (a) clockwise
 - (b) anticlockwise
 - (c) gusty
 - (d) strong easterly
 - (e) calm
- 30. Referring to Figure (8), a station on the northern border of Alberta reports overcast sky conditions, and the "present weather" is designated by the two "dots" appearing to the left of the station symbol. What *was* the present weather?
 - (a) gusting surface wind
 - (b) snowing
 - (c) lightning
 - (d) raining
 - (e) fog

Equations and Data.

- one full barb on the wind vector means 5 m s^{-1} , a solid triangle 25 m s^{-1} .
- $E = \epsilon \sigma T^4$. Stefan-Boltzmann law. $E [W m^{-2}]$, the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

- $\lambda_{\text{max}} = \frac{2897}{T}$. Wien's displacement law. λ_{max} [µm], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.
- $\alpha = 90^{\circ} |\phi \delta|$. Solar elevation α at local solar noon time, at a location having latitude ϕ (negative in the S. hemisphere), at the time of year when solar declination is δ (δ is negative during northern hemisphere winter, and at the time of the solstices its *magnitude* is 23.5°).
- $S = S_i \sin \theta$. Intensity $S [W m^{-2}]$ of beam radiation on a *horizontal* surface, as a function of the beam elevation angle θ above the horizontal. $S_i [W m^{-2}]$ is the strength of the beam itself, i.e. the radiative flux density though a plane held perpendicular to the beam.
- $Q^* = Q_H + Q_E + \Delta Q_S$. Surface energy balance on a reference plane at the base of the atmosphere. Q^* the net radiation, positive if directed towards the surface; Q_H, Q_E the sensible and latent heat fluxes, positive if directed from the surface towards the atmosphere; ΔQ_S (sometimes denoted Q_G) the storage term, positive if directed from the surface into ground/lake/ocean.
- $e = \rho_v R_v T$. The ideal gas law for water vapor. e [Pa], vapour pressure; ρ_v , [kg m⁻³] the absolute humidity (ie. vapor density); T [Kelvin], the temperature; and $R_v = 462$ [J kg⁻¹ K⁻¹], the specific gas constant for water vapor.
- RH= 100 $e/e_*(T)$, $q = m_v/(m_v + m_d) = \rho_v/\rho$. Definitions of relative humidity and specific humidity, $e_*(T)$ being the "equilibrium vapour pressure" at temperature T; and ρ being the total air density.
- $\theta = T \left(\frac{P_{\text{ref}}}{P}\right)^{R_d/c_p}$. Gives the potential temperature (θ , in K) of a parcel or air sample whose state is (P, T) with the reference pressure taken as P_{ref} . The sample temperature T is in Kelvin; $R_d = 287 \,\text{J kg}^{-1} \,\text{K}^{-1}$ is the specific gas constant for dry air; and $c_p \approx 10^3 \,\text{J kg}^{-1} \,\text{K}^{-1}$ is the specific heat capacity of air at constant pressure.
- $F_B = g \frac{T_p T}{T} = g \frac{\theta_p \theta}{\theta}$. The buoyancy force on a parcel whose temperature is T_p (and potential temperature is θ_p) at a level where the environmental temperature and potential temperature are T, θ . The denominator must be in Kelvin unit. F_B is positive for an upward force.
- $z_{\text{LCL}} = 125 \ (T_{\text{sfc}} T_{\text{d,sfc}})$. Gives the height of the LCL in metres AGL, given the difference between surface temperature and surface dewpoint.

Table 1: Equilibrium vapour pressure $e_s(T)$ [hPa] versus temperature T [°C]. Figure cited applies to equilibrium over a plane surface of water where $T \ge 0^{\circ}$ C, or of ice where $T < 0^{\circ}$ C.

T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$	T	$e_s(T)$
-10	2.60	-5	4.02	0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
-9	2.84	-4	4.37	1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
-8	3.10	-3	4.76	2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
-7	3.38	-2	5.17	3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
-6	3.69	-1	5.62	4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

Figure 1: Idealized daily cycle in the components of the surface energy balance "for a moist, vegetated surface on a clear day in summer" (Figure 6.19 from Ross's Weather & Climate). Symbols are Q^* the net radiation (= $K^* + L^*$, sum of net shortwave plus net longwave radiation), positive for downward flow towards the surface; Q_H, Q_E the sensible and latent heat fluxes, positive for upward flow away from the surface; and Q_G the energy flux into storage, sometimes labelled ΔQ_s .

Figure 2: Radiative absorptivity of the earth's atmosphere, versus wavelength (" λ "): if, at a given wavelength, the absorptivity is 100%, then light of that wavelength is absorped completely on a vertical path through the (whole) atmosphere. Labels (A,B,...E) each denote a characteristic region of the absorption spectrum.

Figure 3: Stony Plain sounding, 00 UTC 25 October 2014, plotted on the skew-T diagram. Dry adiabats (e.g. **a**), moist adiabats (e.g. **b**), isobars (e.g. **d**) and isotherms (e.g. **e**) are all solid lines; isohumes (e.g. c) are dashed lines. 10

Figure 6: Idealized parcel evolution in flow over a mountain, assuming all vapour that condenses during the ascent is precipitated out of the parcel (Ross's Figure 8.8a).

Figure 7: Environment Canada 500 hPa analysis (cropped) for 12 UTC 2 October 2015.

Figure 8: Environment Canada surface analysis (cropped) for 12 UTC 2 October 2015.