EAS270, "The Atmosphere" 2nd Mid-term Exam 2 Nov. 2016

<u>Professor</u>: J.D. Wilson <u>Time available</u>: 50 mins <u>Value</u>: 25%

No formula sheets; no use of tablet computers etc. or cell phones. Formulae/data at back.

Multi-choice (25 x 1 ightarrow 25 %)

- 1. Referring to Figure (1), which statement is **false**?
 - (a) A,B,C lie in the shortwave radiation band
 - (b) D,E lie in the longwave radiation band
 - (c) The atmosphere is almost completely transparent at C
 - (d) Waveband C would be ideal for nocturnal viewing of earth from satellites XX
 - (e) The high absorbtivity at $\lambda > 20 \,\mu \text{m}$ is due to greenhouse gases
- 2. Referring to Figure (2), select the correct pair of values for the temperature lapse rate $(\Delta T/\Delta z)$ in respectively the lower and the upper layers. (Note: a temperature *change* of 1°C is the same as a change of 1 K).
 - (a) -0.01 Km^{-1} , -0.005 Km^{-1}
 - (b) -0.01 Km^{-1} , $-0.002 \text{ Km}^{-1} \checkmark \mathbf{Read} \Delta T / \Delta z$ off graph.
 - (c) -0.02 Km^{-1} , -0.002 Km^{-1}
 - (d) -0.02 Km^{-1} , -0.005 Km^{-1}
 - (e) -0.05 Km^{-1} , -0.005 Km^{-1}
- 3. Referring to Figure 3, which option gives correct units for the vertical axis (spectral emission rate from a black body) and for the area under the curve (emitted radiant energy flux density)?
 - (a) $W m^{-2}$, $W m^{-2}$
 - (b) $W m^{-2} \mu m^{-1}$, W
 - (c) $W m^{-2} \mu m^{-1}$, $W m^{-2} \checkmark$
 - (d) $W m^{-2} \mu m^{-1}$, $W \mu m^{-1}$
 - (e) $W \mu m^{-1}$, $W \mu m$
- 4. If a certain body has longwave emissivity $\epsilon = 0.96$ and its temperature is $T = 18^{\circ}$ C, which option most closely states the wavelength λ_{max} of the peak in its thermal emission spectrum and its full-spectrum rate of emission E of longwave radiation?
 - (a) $10 \,\mu \text{m}, \, 390 \,\text{W} \,\text{m}^{-2}$
 - (b) $10 \,\mu \text{m}, \, 6 \times 10^{-3} \,\text{W}\,\text{m}^{-2}$
 - (c) $100 \,\mu \text{m}, \, 390 \,\text{W} \,\text{m}^{-2}$
 - (d) $1 \,\mu \text{m}, 410 \,\text{W}\,\text{m}^{-2}$
 - (e) $0.1 \,\mu \text{m}, 410 \,\text{W} \,\text{m}^{-2}$

- 5. Which statement in regard to Figure (4) is **false**?
 - (a) each of Q^*, Q_H, Q_E quantifies an energy flux density oriented along the *vertical* axis
 - (b) it is implicit (assumed) horizontal energy flows are irrelevant
 - (c) above the laminar sublayer on ground surfaces, the transport mechanism for sensible & latent heat (Q_H, Q_E) is convection
 - (d) Q_G (sometimes symbolized ΔQ_S) is the rate at which energy is stored/released below the reference plane
 - (e) times of sunrise & sunset coincide with sign changes in net radiation (Q^*) XX
- 6. Suppose on a sunny summer afternoon the net radiation over a flat field of bare soil were $Q^* = 500 \text{ W m}^{-2}$, and the sensible and latent heat fluxes were $Q_H = 180$, $Q_E = 300 \text{ W m}^{-2}$. What was the soil heat flux Q_G ?
 - (a) 980 W m^{-2}
 - (b) 480 W m^{-2}
 - (c) 120 W m^{-2}
 - (d) 20 W m⁻² \checkmark
 - (e) -980 W m^{-2}
- 7. Compute absolute humidity ρ_v if vapour pressure e = 1.1 kPa and temperature $T = 23^{\circ}$ C.
 - (a) $8 \times 10^{-3} \text{ kg m}^{-3} \checkmark$
 - (b) $8 \times 10^{-6} \text{ kg m}^{-3}$
 - (c) 0.1 kg m^{-3}
 - (d) $1 \times 10^{-4} \text{ kg m}^{-3}$
 - (e) $8 \,\mathrm{g \, kg^{-1}}$
- 8. What is the RH of air with temperature $T = 6^{\circ}$ C and vapour pressure e = 7 hPa?
 - (a) 95%
 - (b) 75% **√√**
 - (c) 65%
 - (d) 55%
 - (e) 45%
- 9. Which property is **not** constant, for an air parcel undergoing unsaturated, adiabatic vertical motion?
 - (a) mixing ratio r
 - (b) specific humidity q
 - (c) potential temperature θ
 - (d) vapour pressure $e \times \times$

- 10. Suppose planet A at distance r_A from its star (or sun) has solar constant S_A . What is the solar constant (" S_B ") for planet B, orbiting the same star at distance $r_B = 4 r_A$?
 - (a) $4S_A$
 - (b) $16 S_A$
 - (c) $S_A/4$
 - (d) $S_A/16 \checkmark$
 - (e) $S_A/64$
- 11. A hypothetical "radiative equilibrium temperature" $T_{\rm E}$ can be calculated as the mean temperature of an isothermal earth (of radius r_E) that has no atmosphere, based on an energy balance of form

$$\frac{dT_E}{dt} \propto \pi r_E^2 (1 - r_s) S_0 - 4\pi r_E^2 \sigma T_E^4$$

$$I \qquad III \qquad III$$

where the term on the left is the rate of warming or cooling (change in T_E per unit change in time t), r_s is the albedo (shortwave reflectivity), S_0 the solar constant, σ the Stefan-Boltzmann constant, and \propto means "is proportional to". Which term(s) is/are set to zero in order to compute the radiative equilibrium temperature?

- (a) $I \checkmark \checkmark$ (b) I, II (c) I, III (d) I, II, III (e) III
- 12. Suppose a pilot, flying at midday through the middle of a deep cloud layer, observes a brighter region towards the sun. Which best describes the colour of this sunlight?
 - (a) reddish light
 - (b) bluish light
 - (c) milky white light \checkmark
 - (d) yellow-brown light
- 13. At the time of the southern hemisphere summer solstice (solar declination $\delta = -23.5^{\circ}$), what is the noon solar elevation at latitude $\phi = +23.5^{\circ}$ (which is in the northern hemisphere)? (See given equation)
 - (a) 90°
 - (b) 66.5°
 - (c) 43° ✓✓
 - (d) 23.5°
 - (e) 0°

- 14. Based on Figure (5), at what time did the daily maximum in surface temperature occur? (Note: Local Standard Time was UTC 7).
 - (a) 0/24 UTC
 - (b) 21 UTC
 - (c) between 19 and 20 UTC
 - (d) 13 UTC
 - (e) 3 UTC
- 15. Assuming Figure (6) applies during a period of cloudless summer weather, which interpretive statement is **false**?
 - (a) the layer identified as "free air" also classifies as being an inversion
 - (b) the "Residual Layer" is well-mixed (i.e. neutral) with respect to unsaturated adiabatic motion
 - (c) this diagram is characteristic of mid-afternoon conditions XX
 - (d) the "free air" is unconditionally stable
 - (e) the sensible heat flux Q_H is negative in the surface inversion, and zero in the Residual Layer
- 16. Referring to Figure (7), over what interval of time was the atmospheric surface layer unstably stratified?
 - (a) midnight to 07:00
 - (b) 17:30 to midnight
 - (c) midnight to 07:00 and 17:30 to midnight
 - (d) 07:00 to 17:30 $\checkmark\!\!\!\checkmark$
 - (e) 05:30 to 20:00

17. Referring to Figure (8), what is the temperature T if the vapour pressure is e = 4 kPa?

- (a) $-20^{\circ}C$
- (b) 0°C
- (c) 20°C
- (d) 29°C
- (e) T cannot be determined from the given information XX

- 18. Referring to Figure (9), which statement is **true**?
 - (a) the middle layer is neutral with respect to unsaturated adiabatic motion $\checkmark\checkmark$
 - (b) until it rose above level z, an unsaturated parcel rising from the surface would be subject to a downward buoyancy force F_B
 - (c) in middle layer, potential temperature decreases with increasing height
 - (d) the uppermost layer is absolutely unstable
 - (e) the surface layer is an inversion
- 19. Using Figure (10), deduce an *approximate* value for the potential temperature of air with $(P,T) = (400 \text{ hPa}, -60^{\circ}\text{C})$, taking the reference pressure as 1000 hPa.
 - (a) $-22^{\circ}C$
 - (b) -22K
 - (c) $-2^{\circ}C$
 - (d) $+4^{\circ}C \checkmark$
 - (e) $+22^{\circ}C$
- 20. Again referring to Figure (10), suppose the surface pressure, temperature and dewpoint were respectively (1000hPa, 10°C, −20°C). Using Normand's Rule, estimate the pressure at the Lifting Condensation Level.
 - (a) 510 hPa
 - (b) 630 hPa 🗸
 - (c) 680 hPa
 - (d) 850 hPa
 - (e) 1000 hPa
- 21. If the Level of Free Convection is at height $z_{LCL} = 500 \text{ m AGL}$ (above ground level) and the surface temperature is $T = 23^{\circ}$ C, what is the surface dewpoint T_d ?
 - (a) $-4^{\circ}C$
 - (b) 4°C
 - (c) $11.5^{\circ}C$
 - (d) 19°C ✓✓
 - (e) $27^{\circ}C$

- 22. What is signified by the heavy dashed line on Figure (11) that has been added by the instructor?
 - (a) ridge in the 500 hPa height field
 - (b) trough in the 500 hPa height field
 - (c) thermal (thickness) ridge \checkmark
 - (d) thermal trough
 - (e) possibility of freezing rain
- 23. What is signified by the pattern of stippling on Figure (11)?
 - (a) possibility of freezing rain
 - (b) thickness lies in the interval $534 \le \Delta Z \le 540 \text{ dam} \checkmark$
 - (c) temperature-dewpoint spread $T_{\rm dd} \leq 2$ K
 - (d) temperature below freezing
 - (e) probable path for the upper low to follow
- 24. Based on Figure (11), which statement regarding the short term (say, 1 hour) weather trend at the point denoted "X" (north of "SASK.") is most plausible?
 - (a) advective warming \checkmark
 - (b) advective cooling
 - (c) radiative cooling
 - (d) frost
 - (e) rain
- 25. Referring to Figure (12), which statement correctly distinguishes the expected 1-hour advective temperature trends at the points (A,B,C)?
 - (a) A warming, B cooling, C cooling
 - (b) A cooling, B warming, C cooling
 - (c) A unchanging, B warming, C warming
 - (d) A unchanging, B cooling, C warming \checkmark
 - (e) A warming, B warming, C warming

Equations and Data.

- $E = \epsilon \sigma T^4$. Stefan-Boltzmann law. E [W m⁻²], the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.
- $\lambda_{\max} = \frac{2897}{T}$. Wien's displacement law. λ_{\max} [µm], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.
- $\alpha = 90^{\circ} |\phi \delta|$. Solar elevation α at local solar noon time, at a location having latitude ϕ (negative in the S. hemisphere), at the time of year when solar declination is δ (δ is negative during northern hemisphere winter, and at the time of the solstices its *magnitude* is 23.5°).
- $Q^* = Q_H + Q_E + \Delta Q_S$. Surface energy balance on a reference plane at the base of the atmosphere. Q^* the net radiation, positive if directed towards the surface; Q_H, Q_E the sensible and latent heat fluxes, positive if directed from the surface towards the atmosphere; ΔQ_S (sometimes denoted Q_G) the storage term, positive if directed from the surface into ground/lake/ocean.
- $e = \rho_v R_v T$. The ideal gas law for water vapor. e [Pa], vapour pressure; ρ_v , [kg m⁻³] the absolute humidity (ie. vapor density); T [Kelvin], the temperature; and $R_v = 462$ [J kg⁻¹ K⁻¹], the specific gas constant for water vapor.
- $F_B = g \frac{T_p T}{T} = g \frac{\theta_p \theta}{\theta}$. The buoyancy force on a parcel whose temperature is T_p (and potential temperature is θ_p) at a level where the environmental temperature and potential temperature are T, θ . The denominator must be in Kelvin unit. F_B is positive for an upward force.
- $z_{\text{LCL}} = 125 (T_{\text{sfc}} T_{\text{d,sfc}})$. Gives the height of the LCL in metres AGL, given the difference between surface temperature and surface dewpoint.

Table 1: Equilibrium vapour pressure $e_s(T)$ [hPa] versus temperature T [°C]. Figure cited applies to equilibrium over a plane surface of water where $T \ge 0^{\circ}$ C, or of ice where $T < 0^{\circ}$ C.

													$e_s(T)$		
-10	2.60	-5	4.02	0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
-9	2.84	-4	4.37	1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
-8	3.10	-3	4.76	2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
-7	3.38	-2	5.17	3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
-6	3.69	-1	5.62	4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

Figure 1: Radiative absorptivity of the earth's atmosphere, versus wavelength (" λ "): if, at a given wavelength, the absorptivity is 100%, then light of that wavelength is absorbed completely on a vertical path through the (whole) atmosphere. Labels (A,B,...E) each denote a characteristic region of the absorption spectrum.

Figure 2: Idealized profile of temperature in the lowest 1500 m of the atmosphere. The "elbow" is at $(z,T) = (500 \text{ m}, 15^{\circ} \text{C})$. (Note: a temperature *change* of 1°C is the same as a change of 1 K.)

Figure 3: Planck curve for the spectral emission rate from a blackbody with temperature 300 K.

Figure 4: Idealized daily cycle in the components of the surface energy balance "for a moist, vegetated surface on a clear day in summer" (Figure 6.19 from Ross's Weather & Climate). Symbols are Q^* the net radiation (= $K^* + L^*$, sum of net shortwave plus net longwave radiation), positive for downward flow towards the surface; Q_H, Q_E the sensible and latent heat fluxes, positive for upward flow away from the surface; and Q_G the energy flux into storage, sometimes labelled ΔQ_s .

Figure 5: Variation with time of the components of the near-surface radiation budget, measured in Nevada.

Potential Temperature

Figure 6: Idealised profile of potential temperature $\theta(z)$.

Figure 7: Variation with time of the components of the surface energy budget over grassland in Alberta (1 July 2003; courtesy of L. Flanagan).

Figure 8: Curve giving equilibrium vapour pressure versus temperature. (Ross, Fig 7.4.)

Figure 9: Idealized three-layer summer, daytime temperature profile. (Ross's Figure 8.21).

Figure 10: Blank skew-T/log-P diagram. Heavy solid curves are dry adiabats, lighter solid curves are moist adiabats, dashed lines are isohumes, and straight lines are isobars or isotherms..

Figure 11: CMC 500 hPa analysis (cropped) for 12Z on 27 Sept. 2016. Secondary field is the 1000-500 hPa thickness, and the contour on the "warm side" of the stippled zone is the 540 dam thickness contour.

Figure 12: CMC 850 hPa analysis (cropped) for $00{\rm Z}$ on 10 Oct. 2016.