<u>Professor</u>: J.D. Wilson <u>Time available</u>: 50 mins <u>Value</u>: 20%

No formula sheets or cell phones. Formulae and data provided at the back. Please record your multichoice answers on the scantron sheet, choosing the correct or most logical answers (incorrect options *may* feature false or misleading statements or 'facts'). Respond to short answer and calculation questions in the space provided: **add your name**, tear off and submit. (You may keep other pages of this exam.)

A. Multi-choice (15 x $2/3 \rightarrow 10 \%$)

- 1. Molecules of CO_2 combine a carbon atom (atomic number 12) with two oxygen atoms (oxygen having atomic number 16). Given that the universal gas constant is $R^* = 8.3143 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$, which value below best approximates the specific gas constant R for CO_2 ?
 - (a) $190 \,\mathrm{J\,kg^{-1}\,K^{-1}}$
 - (b) $0.044 \,\mathrm{kg} \,\mathrm{mol}^{-1}$
 - (c) $287 \,\mathrm{J\,kg^{-1}\,K^{-1}}$
 - (d) 0.190 J kg⁻¹ K⁻¹
 - (e) $300 \,\mathrm{J\,kg^{-1}\,K^{-1}}$
- 2. Suppose the atmosphere of a certain planet were composed entirely of N_2 , for which the specific gas constant is $R = 297 \,\mathrm{J\,kg^{-1}\,K^{-1}}$. If the surface pressure and temperature at a certain point on this planet were (80 kPa, 50°C) then what was the surface density ρ ?
 - (a) $0.1 \,\mathrm{kg}\,\mathrm{m}^{-3}$
 - (b) $0.5 \,\mathrm{kg} \,\mathrm{m}^{-3}$
 - (c) $0.83 \,\mathrm{kg} \,\mathrm{m}^{-3}$
 - (d) 1 kg m⁻³
 - (e) $5.4 \,\mathrm{kg} \,\mathrm{m}^{-3}$
- 3. Isolines of which "secondary field" are plotted on the CMC isobaric charts for the 850 hPa level?
 - (a) MSLP
 - (b) isobaric height
 - (c) isohumes (isolines of relative humidity)
 - (d) 1000-500 hPa thickness (DZ)
 - (e) temperature

- 4. Suppose 0.5 kg of dry air is contained in a rigid volume of 2 cubic metres. Which value best approximates the change in temperature (final minus initial) if 10^4 J of energy are added to this system?
 - (a) -30K
 - (b) -15K
 - (c) + 15K
 - (d) + 30K
 - (e) +60K
- 5. At the time of the southern hemisphere summer solstice, what is the noon solar elevation at 23.5°N latitude?
 - (a) 0°
 - $(b) 23.5^{\circ}$
 - (c) 43°
 - $(d) 66.5^{\circ}$
 - (e) 90°
- 6. Defining the volumetric sensible heat content of a parcel of air as $h = \rho c_p T [\mathrm{J m}^{-3}]$ and taking the ρc_p product as $10^3 [\mathrm{J m}^{-3} \mathrm{K}^{-1}]$, what is the value of the convective heat flux density Q_x if the x-component of the wind is $u = 5 \mathrm{m s}^{-1}$ and the temperature of the parcel is 300 K?
 - (a) $1.5 \times 10^6 \,\mathrm{W}\,\mathrm{m}^{-2}$
 - (b) $3 \times 10^5 \text{ K}$
 - (c) $120 \,\mathrm{W}\,\mathrm{m}^{-3}$
 - (d) 120 W m⁻² s⁻¹
 - (e) $1500 \,\mathrm{J}\,\mathrm{m}^{-3}$
- 7. Taking the conductivity of glass as $k = 1 \, [\text{W m}^{-1} \, \text{K}^{-1}]$, what is the rate of conductive heat transfer across a window pane of area $1 \, \text{m}^2$ and thickness $\Delta x = 2.5 \, \text{mm}$ when the temperature difference across the pane is $4 \, \text{K}$?
 - (a) 1600 J
 - (b) 1600 W
 - (c) 160 W s⁻¹
 - (d) 100 W
 - (e) 10 W
- 8. A parcel of dry air at the surface (z=0 m) has a temperature of 20°C. It is lifted adiabatically to z=700 m then sinks adiabatically to z=500 m. Its final temperature is?
 - (a) 29° C
 - (b) 27°C
 - (c) 25°C
 - (d) 20°C
 - (e) 15°C

- 9. If a certain body has longwave emissivity $\epsilon = 0.96$ and its temperature is $T = 18^{\circ}\text{C}$, which answer below most closely states the wavelength λ_{max} of the peak in its thermal emission spectrum and its full-spectrum rate of emission E of longwave radiation?
 - (a) $10 \,\mu\text{m}$, $6 \times 10^{-3} \,\text{W m}^{-2}$
 - (b) $10 \,\mu\text{m}$, $390 \,\text{W m}^{-2}$
 - (c) $100 \,\mu\text{m}$, $390 \,\text{W} \,\text{m}^{-2}$
 - (d) $1 \,\mu\text{m}$, $410 \,\text{W m}^{-2}$
 - (e) $0.1 \,\mu\text{m}$, $410 \,\text{W m}^{-2}$
- 10. Suppose a parcel of air at the surface had state $(P_1, T_1) = (930 \,\text{hPa}, 12^{\circ}\text{C})$. What is the parcel's temperature after it has been lifted adiabatically to the 850 hPa level? (Hint: Poisson's equation).
 - (a) 11.7° C
 - (b) 12.3°C
 - (c) 278 K
 - (d) 293 K
- 11. Suppose on a sunny summer afternoon the net radiation over a flat field of bare soil were $Q^* = 500 \text{ W m}^{-2}$, and the sensible and latent heat fluxes were $Q_H = 180$, $Q_E = 300 \text{ W m}^{-2}$. What was the soil heat flux Q_G ?
 - (a) 980 W m^{-2}
 - (b) 480 W m^{-2}
 - (c) 120 W m⁻²
 - (d) 20 W m⁻²
 - $(e) -980 \text{ W m}^{-2}$

For the remaining questions, please refer to Figures (1-2).

- 12. What was MSLP and what were the present weather conditions at the station closest to the X on Figure 1?
 - (a) 915.6 hPa; overcast, rain, light ENE wind
 - (b) 915.6 hPa; overcast, snow, light WSW wind
 - (c) 1015.6 hPa; overcast, rain, light WSW wind
 - (d) 1015.6 hPa; overcast, snow, light WSW wind
 - (e) 1015.6 hPa; overcast, snow, light ENE wind

- 13. The wind observations on Figure 1 show anti-clockwise winds about the low pressure system near Churchill (Manitoba), with a component of crossisobar flow towards low pressure. Which statement is **false**?
 - (a) this is the normal pattern of flow about a N. hemisphere low
 - (b) the cross-isobar wind implies ascending vertical motion, possibly resulting in cloud and precip
 - (c) on the west side of the low, cold air is moving southward to replace milder air (cold advection)
 - (d) on the east side of the low, cold air is moving northward to replace milder air (warm advection)
 - (e) MSLP at the centre of the low was lower than 992 hPa
- 14. According to Figure 2, the 850 hPa analysis, at which point or points was cold advection occurring?
 - (a) A
 - (b) A, B
 - (c) C
 - (d) B, D
 - (e) B
- 15. From Figure 2, how would you describe the 850 hPa wind over Edmonton?
 - (a) NNW, over 15 m s⁻¹, parallel to height contours

 - (b) SSE, over 15 m s⁻¹, parallel to height contours
 (c) NNW, over 30 m s⁻¹, perpendicular to height contours
 (d) NNW, over 15 m s⁻¹, crossing height contours

Continue to Calculations on next page.

Name 5

B. Computations (2 x 2 \rightarrow 4 %)

Round your answers to three significant digits (e.g. 1.23 or 0.0123 or 1.23×10^{-2}), and state the units.

The hypsometric equation reads

$$\Delta z = z_2 - z_1 = \left[\frac{R_d \, \overline{T}_v}{g} \right] \, \ln \frac{P_1}{P_2} \,,$$

where $R_d = 287 \text{ [J kg}^{-1} \text{ K}^{-1} \text{] and } g = 9.81 \text{ [m s}^{-2} \text{]}$. Note that if $z_2 > z_1$, then $P_2 < P_1$.

B1. What is the thickness Δz of the 1000 hPa to 500 hPa atmospheric layer if the average virtual temperature of the layer is $\overline{T}_v = 0$ °C?

B2. Suppose the distance from ground to the 850 hPa isobaric surface was $\Delta z = 900$ m and that the average virtual temperature of that layer was $\overline{T}_v = 10^{\circ}$ C? What is the pressure at the surface?

Name 6

$\mathbf{C}.$	Short	answer	questions	(2	\mathbf{X}	3	\rightarrow	6	%)

C1.	Describ	e (qualitati	vely) the	change in	n the	phase	(or,	"delay")	ϕ and	am-
plitu	de A of	the annual	temperati	ure wave	with	increas	ing	$\operatorname{depth} z$ ${ m i}$	nto a s	oil.

C2. Consider an isothermal planet of radius R that has no atmosphere, whose solar constant is S_0 , and whose albedo is a=0.7. Making reference to a statement of proportionality $(dT/dt \propto ...)$, explain the feedback that stabilizes the temperature T of this hypothetical planet.

L		

Equations and Data.

- one full barb on the wind vector corresponds to 5 m s⁻¹, and a solid triangle means 25 m s^{-1} .
- $\frac{\Delta P}{\Delta z} = -\rho \ g$. ΔP [Pascals], the change in pressure as one ascends a distance Δz [m]; ρ [kg m⁻³] the air density; g = 9.81 [m s⁻²] acceleration due to gravity.
- $R = R^*/M$. Gives the specific gas constant R for a gas composed on molecules having molecular mass $M \log \text{mol}^{-1}$, where $R^* = 8.3143 \, \text{J mol}^{-1} \, \text{K}^{-1}$ is the universal gas constant. To a first approximation the molecular mass of an *atom* is given by its atomic number, i.e. its place in the periodic table of the elements.
- $P = \rho R_d T_v$. The ideal gas law. P [Pascals], total pressure; ρ , [kg m⁻³] the total density; T_v [Kelvin], the virtual temperature; and $R_d = 287$ [J kg⁻¹ K⁻¹], the specific gas constant for dry air.
- $\Delta q = c_v \ \Delta T + P \ \Delta \alpha$. The first law of thermodynamics, linking changes in the state of a sample of air: $\Delta q \ [\mathrm{J \ kg^{-1}}]$ is energy added to the system (zero for an adiabatic process, by definition), c_v is the specific heat capacity of the material at constant volume, P is the pressure and $\alpha \equiv 1/\rho$ is the specific volume (ρ being air density). The $c_v \ \Delta T$ term is the change in the internal energy of the system. For an ideal gas $c_v = (5/2)R$, so that for dry air $c_v \approx 720 \ \mathrm{J \ kg^{-1} \ K^{-1}}$.

 $\frac{T}{T_1} = \left(\frac{P}{P_1}\right)^{R/c_p}$

Poisson's law linking two states (P,T) and (P_1,T_1) of a sample of ideal gas, assuming the process connecting the two states is adiabatic $(R/c_p = 2/7 = 0.286)$.

• $\frac{\Delta T}{\Delta z} = -\frac{g}{c_p}$. The dry adiabatic lapse rate, where g is the gravitational acceleration and c_p [J kg⁻¹ K⁻¹] is the specific heat at constant pressure. Our textbook defines the DALR as the magnitude, DALR= $|\Delta T/\Delta z|$, often rounded to DALR=1°C/100 m.

 $Q = -k \frac{\Delta T}{\Delta x}$

Fourier's law of conduction, giving the conductive heat flux density Q in direction x if there is a temperature gradient $\Delta T/\Delta x$ in a medium whose conductivity is $k \, \mathrm{W} \, \mathrm{m}^{-1} \, \mathrm{K}^{-1}$. (The sign convention is that Q is positive for a flow of heat towards larger values of x.)

• $E = \epsilon \sigma T^4$

Stefan-Boltzmann law for a greybody. E [W m⁻²], the emitted longwave energy flux density; ϵ , the emissivity of the surface (dimensionless); $\sigma = 5.67 \times 10^{-8}$ [W m⁻² K⁻⁴], the Stefan-Boltzmann constant; T [K], the surface temperature.

 $\bullet \lambda_{\max} = \frac{2897}{T}$

Wien's displacement law. λ_{max} [μ m], the wavelength at which the peak in the emission spectrum occurs; T [K], the temperature of the emitting surface.

- $Q^* = Q_H + Q_E + Q_G$. Surface energy balance on a reference plane at the base of the atmosphere. Fluxes normally in $[W m^{-2}]$, but sometimes expressed as totals $[J m^{-2}]$ over (e.g.) a day or a year. Q^* the net radiation, positive if directed towards the surface; Q_H, Q_E the sensible and latent heat fluxes, positive if directed from the surface towards the atmosphere; Q_G the 'soil' heat flux, positive if directed from the surface into ground/lake/ocean.
- $\alpha = 90^{\circ} |\phi \delta|$. Solar elevation α at local solar noon time, at a location having latitude ϕ (negative in the S. hemisphere), at the time of year when solar declination is δ (δ is negative during northern hemisphere winter, and its magnitude never exceeds 23.5°).

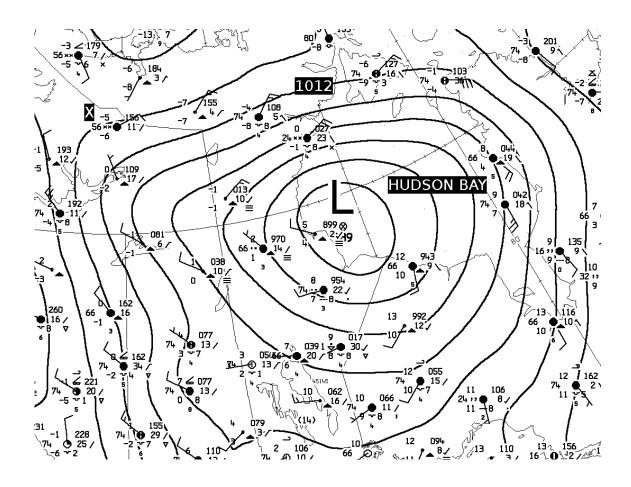


Figure 1: Environment Canada surface analysis (cropped) for 12 UTC Thurs. 2 October 2014.

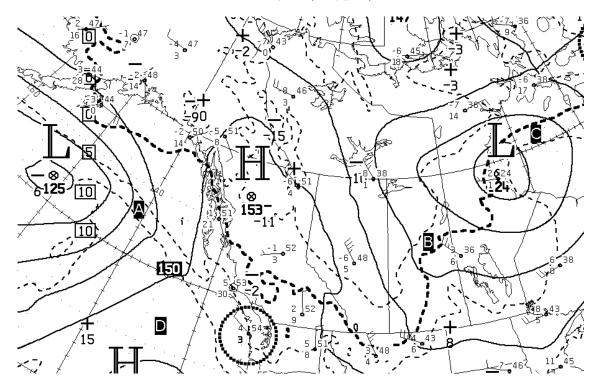


Figure 2: Environment Canada 850 hPa analysis (cropped) for 12 UTC Thurs. 2 October 2014.