<u>Professor</u>: J.D. Wilson <u>Time available</u>: 20 mins <u>Value</u>: 10%

Instructions: Choose the best (or most logical) option, and use a pencil to mark that choice on the scantron form. **Eqns/data given at back**. You may keep this quiz.

- 1. If vapour pressure e = 1.1 kPa and the temperature T = 23°C, what is the absolute humidity ρ_v ?
 - (a) $8 \times 10^{-3} \text{ kg m}^{-3} \checkmark \checkmark [81\% \text{ correct}]$
 - (b) $8 \times 10^{-6} \text{ kg m}^{-3}$
 - (c) 0.1 kg m^{-3}
 - (d) $1 \times 10^{-4} \text{ kg m}^{-3}$
 - (e) $8 \, \mathrm{g \, kg^{-1}}$
- 2. What is the relative humidity of air having temperature $T=6^{\circ}\mathrm{C}$ and vapour pressure $e=0.7~\mathrm{kPa?}$
 - (a) 95%
 - (b) $75\% \checkmark \checkmark [84\% \text{ correct}]$
 - (c) 65%
 - (d) 55%
 - (e) 45%
- 3. What option is closest to the dewpoint T_d of air whose temperature and relative humidity are T = 19°C and 65%?
 - (a) 28°C
 - (b) 23°C
 - (c) 19°C
 - (d) 12°C √√[79% correct]
 - (e) 4°C
- 4. Referring to Figure (1), which option best describes the buoyancy force F_B that will act on a parcel of air that rises from the surface into the mixed layer?
 - (a) $F_B = 0$, no buoyancy force
 - (b) $F_B > 0$, downward buoyancy force
 - (c) $F_B > 0$, upward buoyancy force $\checkmark \checkmark [65\% \text{ correct}]$
 - (d) $F_B < 0$, downward buoyancy force
 - (e) $F_B < 0$, upward buoyancy force
- 5. Referring to Figure (2), which statement is **false** or **without justification**?
 - (a) the LFC lies at the level marked "z" $\checkmark \checkmark [67\% \ {\rm correct}]$
 - (b) this is an idealized summer daytime scenario
 - (c) the middle layer is well mixed
 - (d) the surface layer is absolutely unstable
 - (e) the upper layer is an inversion

- 6. Referring to Figure (3), which answer best approximates the total number density of CCN (cm^{-3}) ? Hint: area under the "curve."
 - (a) 10
 - (b) 50
 - (c) 100
 - (d) 200
 - (e) $1200 \checkmark \checkmark [60\% \text{ correct}]$
- 7. Referring to the sounding (Fig. 4), what pressure and temperature correspond to the point of intersection of isotherms and isobars within the heavy circle **O**?
 - (a) 300 Pa, 18°C
 - (b) 300 hPa, 18°C
 - (c) 300 kPa, 18°C
 - (d) $300 \text{ hPa}, -10^{\circ}\text{C}$
 - (e) 300 hPa, -25° C \checkmark [91% correct]
- 8. Referring to the sounding (Fig. 4), what is the correct static stability category for the layer whose upper and lower boundaries are those of the drawn box?
 - (a) absolutely unstable
 - (b) absolutely stable $\checkmark \checkmark$ [38% correct; ELR is weaker than the SALR]
 - (c) conditionally unstable
 - (d) neutral with respect to unsaturated adiabatic motion
 - (e) neutral with respect to saturated adiabatic motion
- 9. Again referring to the sounding (Fig. 4), what is the correct static stability category for the layer below 700 hPa?
 - (a) absolutely unstable
 - (b) absolutely stable
 - (c) conditionally unstable
 - (d) neutral with respect to unsaturated adiabatic motion $\checkmark \checkmark [63\% \text{ correct}]$
 - (e) neutral with respect to saturated adiabatic motion
- 10. Again referring to the sounding (Fig. 4), which level is closest to the LCL for lifted surface parcels?
 - (a) 925 hPa
 - (b) 850 hPa
 - (c) 700 hPa ✓ ✓ [88% correct]
 - (d) 500 hPa
 - (e) 250 hPa

Equations & Data.

- 1 kPa =10 hPa = 1000 Pa, $T[K] = T[^{\circ}C] + 273.15$
- $e = \rho_v R_v T$, The ideal gas law for water vapor. e [Pascals], pressure; ρ_v , [kg m⁻³] the absolute humidity (ie. vapor density); T [Kelvin], the temperature; and $R_v = 462$ [J kg⁻¹ K⁻¹], the specific gas constant for water vapor.
- $F_B = g (T_p T)/T$ or $F_B = g (\theta_p \theta)/\theta$. Alternative expressions for the buoyancy force on a parcel whose temperature and potential temperature are (T_p, θ_p) at a level where the environmental temperature and potential temperature are (T, θ) . The denominator must be expressed in Kelvin.

Table 1: Equilibrium vapour pressure $e_s(T)$ [hPa] versus temperature T [°C]. Figure cited applies to equilibrium over a plane surface of water where $T \ge 0$ °C, or of ice where T < 0°C.

													$e_s(T)$		
-10	2.60	-5	4.02	0	6.11	5	8.72	10	12.27	15	17.04	20	23.37	25	31.67
-9	2.84	-4	4.37	1	6.57	6	9.35	11	13.12	16	18.17	21	24.86	26	33.61
-8	3.10	-3	4.76	2	7.05	7	10.01	12	14.02	17	19.37	22	26.43	27	35.65
-7	3.38	-2	5.17	3	7.58	8	10.72	13	14.97	18	20.63	23	28.09	28	37.80
-6	3.69	-1	5.62	4	8.13	9	11.47	14	15.98	19	21.96	24	29.83	29	40.06

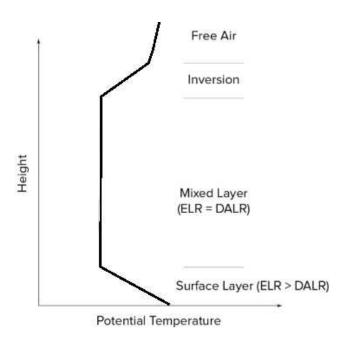


Figure 1: Idealized summer daytime profile of potential temperature θ . (Ross's Figure 8.29).

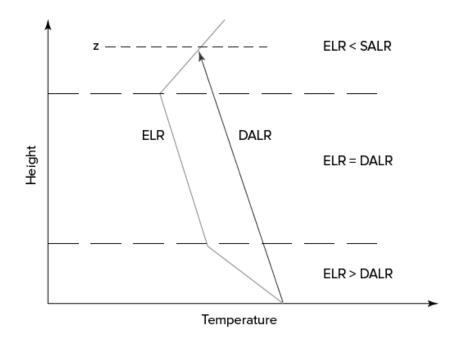


Figure 2: Idealized three-layer temperature profile. Assume the line with the arrow gives the temperature of a parcel as it rises from the surface. (Ross's Figure 8.21).

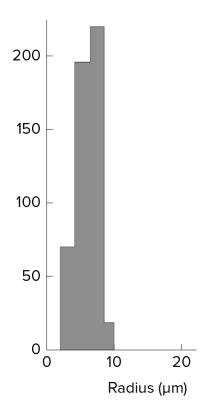


Figure 3: Idealized size distribution of CCN particles in continental air. The unit on the y-axis is cm⁻³ μ m⁻¹, i.e. number of CCN per cubic centimetre per μ m interval of radius. (Ross's Figure 9.5).

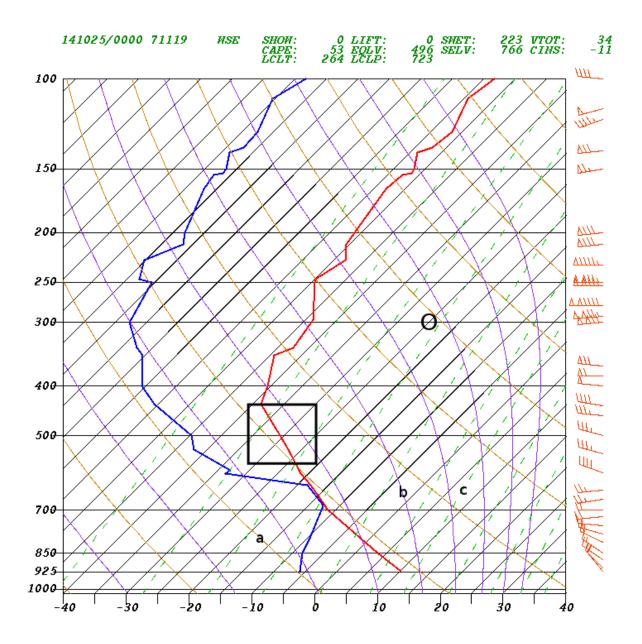


Figure 4: Stony Plain sounding, 00 UTC 25 October 2014, plotted on the skew-T diagram. Unsaturated adiabats (e.g. **a**), saturated adiabats (e.g. **b**) and isotherms are all solid lines; isohumes (e.g. **c**) are dashed lines.