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In a recent publication entitled The Dynamics
of Long Waves in @ Baroclinic Westerly Current
(1947) the writer pointed out that, in the study
of atmospheric wave motion, the problem of inte-
gration is greatly complicated by the simul-
taneous existance of a discrete set of wave motions
all of which satisfy the conditions of the pro-
blem, namely that the wotion be simple-har-
monic and of a specified wave-length. Whereas
only the long inertially-propagated waves are
important for the study of large-scale weather
phenomena, one is forced by the generality of the
equations of motion to contend with each of the
theoretically possible wave types. This extreme
generality whereby the equations of motion apply
to the entire spectrum of possible motions — to
sound waves as well as to cyclone waves —
constitutes a serious defect of the equations from
the meteorological point of view. It means that
the investigator must take into account modi-
fications to the large-scale motions of the atmos-
phere which are of little meteorological importance
and which only serve to make the integration
of the equations a virtual impossibility.

One does not encounter difficulties of this
kind in other branches of applied hydrodynamics,
where the special characteristics of the motions
dealt with are used as 2 means for simplifying
the basic equations. For example, the fundamen-
tal equations of aerodynamics have been conside-
rably simplified by the introduction of the in-
compressibility, homogeneity, and boundary layer
approximations.

The successful procedure of such related
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sciences suggests that a corresponding set of
simplifying principles, characterizing the meteoro-
logically significant motions, can be utilized to
“filter out the noise” from the meteorological
equations. In the search for such a set of prin-
ciples, one is guided by the experience of synoptic
meteorologists who have found that the weather
producing motions of the free atmosphere can be
characterized as quasi-hydrostatic, quasi-adiabatic,
quasi-horizontal, and quasi-geostrophic. But here
one encounters difficulties; although the first
three approximations can be introduced without
difficulty, no acceptable method has been pro-
posed for using the geostrophic approximation
in dynamic analysis. Instead, one can point to
instances in which this approximation breaks
down, such as in the application to the
calculation of pressure changes. Nevertheless
it was found in DLW that the use of the geo-
strophic approximation in certain terms of the
squations of motion has just the effect of filtering
out the meteorologically insignificant wave solu-
tions.

The method of simplification which was em-
ployed in the special case of wave motion has
been extended in the present paper to apply
to the most general large-scale motions. It will
be shown how the geostrophic approximation,
together with the other three approximations
mentioned above, can be incorporated into the
general equations of motion to obtain a dynami-
cally consistent set of simplified equations appli-
cable to all large-scale motions.

But if the present theory is to be free of
inconclusive empirical elements, & means of
estimating the accuracy of the approximations
used must first be given; in particular, one must
demonstrate the validity of the geostrophic
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approximation in a manner which will be accep-
table to those meteorologists who have questioned
its applicability. In the first section of this work
an attempt is therefore made to formulate an ade-
quate theory of meteorological approximations.

Since the meteorologically significant mations
are distinguished from all other types of atmos-
pheric motion only by a great difference in scale,
it is clear that any attempt to justify the peculiarly
meteorological approximations must take into
account the scale of the motion. The present
theory is therefore based on a kind of dimensional
analysis similar to that used in the boundary layer
theory of aerodynamics.? In the latter theory,
the motion is characterized by & length parameter
and a velocity parameter in terms of which the
orders of magnitude of the individual terms in
the equations of motion are evaluated. In the
present theory, the parameters are chosen to
characterize the horizontal and vertical scales of
the motion, the speed of propagation of the
streamline pattern, the horizontal particle speed,
and the internal static stability. It is then shown
that the geostrophic devistion is negligible for
those disturbances whose characteristic frequency
is small compared to the frequency of an horizon-

tal inertial oscillation, i.e., for the primary large-

scale perturbations of the atmosphere.

A further consequence of the theory is that
the terms comprising the horizontal divergence
in rectangular coordinates compensate in such a
way that they are individually one order of
magnitude larger than the horizontal diver-
gence itself. It is this circumstance that makes
it impossible to evaluate the horizontal diver-
gence by means of the geostrophic wind; for
the error incurred thereby would have the same
order of magnitude as the horizontal diver-
gence itself. But, if the horizontal divergence
is excluded, it may be shown that the geostrophic
wind can be used to approxzimate the horizontal
velocity field in all other terms in the equations
of motion. Hence if the equations of motion are
so transformed as to eliminate the horizontal
divergence both implicitly and explicitly, the
geostrophic approximation can be applied to
derive a dynamieaily consistant simplification of
the equations of motion.

* See, for example, Goldstein (1938).
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The elimination of the horizontal divergence
and the application of the geostrophic, hydro-
statio, adiabatic and quasi-horizontal approxima-
tions yield a set of equations which express the
following physical principle: The large-scale
motion of the atmosphere is governed by the laws
of conservation of potential temperature (or
wet-bulb potential temperature) and absolute
potential vorticity, and by the conditions that
the motion be in hydrostatic and geostrophic
equilibrium. Thus the conservation equations of
potential temperature and absolute potential
vorticity, together with the hydrostatic and geo-
strophic equations, form a closed, mutually consi-
stant, dynamical system which applies only to
the meteorologically significant motions and is
therefore free of the defect of too great generality.
By way of illustration it is shown that the simpli-
fied system does filter out the meteorologically
insignificant wave components from the wave
equations for barotropic and baroclinic motion.

These results also have an important appli-
cation to the problem of numerical integration.
The difficulty that has attended this problem
so far is the practical impossibility of evaluating
the initial distributions of horizontal accelera-
tion and horizontal divergence with sufficient
accuracy. But if the simplified equations are
used, the integration presupposes only a know-
ledge of the initial pressure field, a field
which is given directly by available radiosonde
data.

The theory of approximations offered here
contains a justification of the rule that the indi-
vidual time derivative of density is due almost
entirely to the vertical motion., This rule furnishes
the basic reason for the failure of the tendency
equation to serve as a means for calculating pres-
sure changes; it implies that the local pressure
change at the ground is a small difference between
two large quantities — the total positive and total
negative horizontal mass divergence — whose
values cannot be evaluated with sufficient ac-
curacy from observations. However, if the ten-
dency equation is regarded, not as an instrument
for calculating pressure tendencies, but as a state-
ment of the approximate balance between the
total horizontal mass convergence and divergence,
it may be converted into & useful tool for calcu-
lating the speed of systems by the simple expedient
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of evalnating the horizontal divergence in terms
of the individual time derivative of the vertical
vorticity component. If this method is applied
to small amplitude wave motions, it leads to the
known results of Rossby (1939), Haurwitz {1940},
and Holmboe (1945) for a barotropic atmosphere,
and to those of the writer (1947) for a baroclinic
atmosphere. But that the method is quite gene-
ral is shown by its application to the ealculation
of the velocity of propagation of the large ampli-
tude cyclone wave containing closed streamlines
‘at low levels.

1. A THEORY OF METEOROLOGICAL
APPROXIMATIONS.

We shall let  be the west to east distance
measured along a fixed latitude from a fixed
meridian to the meridian through the variable
point, y the south to north distance measured
along the fixed meridian from the fixed latitude
to the latitude through the measured point, and 2
the vertical distance measured upwards. Then
in order to avoid unnecessary geometrical compli-
cations in the analysis, we shall suppose that the

equations of motion in this curvilinear system take

the same form as in a rectangular system whose

z and y axes are tangent respectively to the fixed .

latitude and meridian at their point of inter-
section, and whose z axis is directed vertically
upwards from this point. This approximation
ignores the influence of curvature on the motion
but not the variation with latitude of the coriolis
parameter. Whereas the negleet of curvature pro-
duces only a certain distortion in the kinematics of
the flow, which is of minor importance except for
extremely large-scale motions, the variability of
the coriolis parameter is essential for the ex-
planation of the local dynamics of the motion.
It can be shown that to ignore the variation
of the coriolis parameter in a barotropic atmos-
phere is virtually equivalent to ignoring the
effect of the earth’s rotation altogether.

The Eulerian equations may now be written

a . 12
Gt =—an (1)
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dv ' . leép
dw 1
E—Ju+g=.—?%’ 3
and the equation of continuity
d jfu v | ow
az‘(lne)——a';-i's;"i-a—z]- {4)

Here 4, » and w are the z, y, and z velocity
components respectively; p is the pressure; ¢ the
density; f the z-component of the earth’s vorticity,
2Qsinp; § the corresponding y-component,
20 cosg ; R the angular speed of the earth’s rotation
about its axis; and @ the latitude. The opera-
tor d/dt is the time derivative following the
motion of a particle, i.e.,

d 0 0 1] 2
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where ¥V is the gradient operator ig/ox +
Jjéjoy + kéofez, i, j and k being umit vectors
along the z,y, and z axes respectively.

As it is not our purpose to enter into the
theory of thermodynamicapproximations, although
these may be treated by an analogous method
of dimensional analysis, we shall assume that the
motion is adiabatic. Hence

dn
where 0 is the potential temperature, defined by

8 = constant X pYigt,

(6)
¢ being the ratio ¢,fo, of the specific heat of dry
air at constant pressure to that at constant volume.
Finally we add the equation of state of the
atmosphere, which is assumed to be a perfect

gas,
p=¢&T. {7

Here 7 is the absolute temperature and R the
specific gas constant, equal to ¢,—¢,.

The scale properties of a given motion are
determined as follows: The spatial dimensions
are characterized by S, the mean horizontal
distance between points at which the velocity
components take extreme values, and by H, the
corresponding mean vertical distance. The time
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dimensions are characterized by V, the mean
magnitude of the horizontal velocity component,
by W, the mean magnitude of the vertical velo-
eity component, and by €, the mean speed of
propagation of the horizontal streamline pattern.
Roughly speaking, 8is the mean distance between
trough and wedge in the streamline pattern, and H
is the height of the tropopause if defined for
and », and usually somewhat smaller, though of
the same order of ‘magnitude if defined for w.

For large-scale motions — represented by the
major waves and vortices on the upper level
weather maps — 8 is of the order of 10® m,
H is of the order of 10* m, ¢ is of the order
10msee?, and V is of the order 10 m sec!
throughout the greatest part of the atmosphere.
The order of W may not be assigned independently
for it is dependent on the remaining character-
istic parameters. '

Finally, to characterize the statie stability of
the atmosphere it is convenient to choose the
non-dimensional parsmeter

Heés H
K=o =70—

(8)
where y; is the dry-adiabatic lapse rate of tempe-
rature gfc,, and y is the actual lapse rate in the
atmosphere. The values of K as -a function of y for
a mean temperature of 260°C are givenin table 1.
They are seen to have the order of magnitude 10!
for the normally observed lapse rates in the free
atmosphere.

Tablc 1.
Values of the static stability parameler.
# € k™t 0 2 4 8 8 10
K 038 031 0.23 015 008 000

The following list summarizes the various
orders of the characteristic parameters:

S~ 10m

H~10'm

C ~ 10 msee

V ~ 10 msec™?

K ~ 1071

g ~ 10 msec—?
f. i~ 10"*sec?

(9

The orders of f and j between the latitudes
15° and 75° and the order of ¢ have beén added
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for later reference. The symbol “~” denotes
equality in orders of magnitude.

We are now in a position to evaluate the
orders of magnitude of all quantities appearing
in the equations of motion. This is done by
replacing differentials by finite increments and
expressing the ineremental ratios in terms of
8, H,C,V,and K. Thus to determine the order
of u/és, s being a horizontal distance coordinate,
we replace du/ds by Aufds and choose As equal
to 8. Then, by definition, Au has the same order

of magnitude as u itself, and we have,

v Aw ¥V

%~ AsTE (10)
In the same way

w V

w5 (11)
and

ow W o

é;‘NTS‘—. (lu)

Finally, by taking increments in the 2 direction,

ew V ow V w W
"0 %~ 8% w~g Y

The space derivatives of p and p are estimated
in a similar manner. But here, in order to avoid
having to introduce separate characteristic values
for p and g, we evaluate their logarithmic deriva-
tives instead. Since the fields of pressure and
density have the same horizontal scale as the
velocity field, and since their horizontal space
variations are not greater in order of magnitude
than their mean values, j and g, we may write

w P =~ 3 A ST

- (14)
_ai.(’ _loe  1dhe 1
as T ed g Ns~ 8

On the other hand, since the vertical incre-
ments in p and p through the distance H have
the same order as p and ¢ themselves, we have

2 2 1

= (In p)~ o (In o)~ 7 (15)
To estimate the orders of magnitude of the

time derivatives we may make use of the fact

that the streamline, isobarie, and isopycnic pat-
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terns translate horizontally with the speed O.
Then the system moves the distance ds in the
time ds/C, and the time variation 8/é¢ is given by

& @ 8
EENbs-!a_—.c—‘;. (16)

The case where the local time variation
is produced by a change in amplitude — in
addition to a transiational motion — is provided
for by supposing C to, be composed of the speed
of propagation plus an additional term which
allows for the change in amplitude. The order
of magnitude of C (10 m secl) is kept the
same as before, because the specification of
this order for C is precisely what distinguishes
the meteorologically significant motions from the
several varieties of theoretically possible motions
having the same values of S, H, and V that
may exist. Thus ¢ has the order 10* m sec™?
in external gravity waves and the order 10° m sec?
in tidal waves, and by assigning the order
10 m sec! we exclude such motions. To put the
matter in another way: the motion of the atmo-
sphere is not determined by the initial space
distribution of the kinematic variables; it is also
necessary to assign initial time derivatives. Hence
when the order of V is determined, we may
regard the relation

C~V (17)

as the one which distinguishes the meteorologically
significant motions from all other types of atmo-
spheric motion.

The order of W can now be estimated as
follows. Writing the equatwn of continuity (4)
in the form

8 0 4 In |
=% (Ine)—i‘ué;(hl@)'*‘”ay( e)
on ov 9 ow
1 or ' oy oz (lag) 8z’ (18)

and evaluating its terms by means of (10—16),
we obtain, in the same order,

V.V W W T

g + + + +5 SETHF T

The inequality sign must be added as a
possibility because oufox and év/oy may tend to
compensate. It then follows as a consequence
of (17) that
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v .y

so that the equation of continuity establishes an
upper limit for the magnitude of W.

The above relation, together with (10—13)
and (17), now permits the evaluation of the
operator d/dt as applied to u, v, and w. We
find that

da C vV

~

AT

and if this order of magnitude is inserted into
the hydrodynamical equations (1—3), we obtain

4 op

(20)

——V+f7’—}-JW~—e—'“ (21)
c 1o
.§'V+fV ~ gy (22)
c , 18p
sW+iv+yg ~ o (23)

It then follows from (9) and (19) that the
term involving w in the a-component of the
coriolis force is at least one order smaller than
the term involving v and can therefore be ignored.
Hence by (21) and (22) we obtain

horizontal acceleration Ci§8 N

horizontal coriolis force ~ f  N;

(24)

The quantity & is the characteristic frequency,
C8-1, of the motion, and N, is equal to f, the
frequency of an horizontal inertial oscillation.
In terms of these guantities equation {24) states
that the geostrophic deviation decreases with the
ratio of the characteristic frequency to the frequency
of a horizontal inertial oscillation.

This criterion may be used to prove that the
principle atmospheric perturbations are quasi-
geostrophic, for by substituting the values of
C, 8, and f from (9) into (24), we find
10/10° 1

16« 710’

horizontal acceleration
0 - r (a4
horizontal coriolis force

(25)

which shows that the horizontal acceleration is
one order of magnitude less than that of the
horizontal coriolis force. (Here, as well as in
other sections, an approximation is said to be
valid if the error is less than the term to be approx-
imated by at least one order of magnitude.) We
may therefore regard the geostrophic approx-
imation to be substantiated for the primary large-
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scale perturbations of the atmosphere — as mani-
fested, for example, in the isobaric patterns on
the upper level pressure maps.3

It is not strictly proper to regard the
large-scale motions as independent of the small-
scale motions, for the governing equations are
non-linear and the motions are not super-
posable. But if, as in the atmosphere, the
bulk of the energy is associated with the
large-scale systems, the small-scale motions
may be regarded as turbulent {luctuations
giving rise to small Reynold’s stresses and
heat transports which may be ignored in the
first approximation.

The following additional relationships, ob-
tained from (23), (19), and (9),

vertical coriolis force  jV loix10 1o
acceleration of gravity ¢ 10 ’
vertical acceleration cw <02{1
acceleration of gravity . g8 ~ g82
102X 104 o
10102 ~ 17

when taken together, serve to justify the hydro-
static approximation.

The establishment of the geostrophic approxi-
mation for large-scale motions makes it possible
to derive a more precise value for W than is
furnished by (19). Thus the expansion of (5)

gives
w — __.._/-___ (In 6) /—- (lme), (26)

wkhere
it @

and v, and Y7, denote the horizontal components of
v and V7 respectively. Now from the geostrophic
wind equation

3 A good illustration of the fact that significant
geustrophic deviations are associated only with high-
frequency, and therefore small-scale perturbations, is
provided in en article by Houghton and Austin (1946).
Figures 1, 2, and 3 of this article show that the value of S
corresponding to the large-scale motion — determined
by the 10,000 {t pressure field — is 4 to 5 times greater
than the value of 8 corresponding to the observed field
of the geostrophic deviation.
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oo o Tap (28)
(] Qf R
and the hydrostatic equation
op -
Pele e ge, (29)
we obtaln
]
kX9 (In p} ~ — - oa 5 (In p),
and therefore, wibh the aid of (15),
V )
—(np P~ Ty (30)

Furthermore, differentiation of (28) with respext
to z and substitution of (29) gives

_f_a_'ﬁ.

kX 7 (In o) ~2 (1!1 ) =5

- ? !M
whence, by (13) and (15),
2 IV
By differentiation of (6) with respect to s and
substitution of (30) and (31) we then obtain

2 no~Lp G

(31)

7 1 2

since & = 1.4; and from (16)
(%14
8 (I 6) Nng .
Hence, by (17) zmd (27),
d fov
dt gH ~
Finally since by (8) &(ln 8}/6z ~ K[H, (26) gives
W ACY 1074 x 10 % 10
gk 10 X 164
If we now substitute this order of magni-
tude for W into the equation

(in §) ~

(33)

~ 10—t m sec. (34)

doi _dws | O
—_—— e - W
dt dt oz

we obtain, with the aid of (10—13) and (16)

du dv C‘V fcre

G~~~ Tr~ (1 + 10-%K).

a "™

Since K has the order 10-! we may conclude
that the term in dv,/dt involving w 18 one order
of magnitude smaller than the others, i.e.,

dvh dAvA

_— R ———,

de dt

Thus the acceleration of the horizontal wind
may be computed as if the motion were purely
horizontal.

(85)
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We also observe that the accuracy of the
approximation (35) increases with the static
stability. This condition may be attributed to
the inhibitory effect of the stability on the vertical
motion; for if. the parameters S, H,C,and V
are held consta.nt and the stability parameter K
the partmle motions, become more and more
horizontal.

Application of (15) (16),{30), and (34) now gives

dt(lnp)-!-w

fC v _fCcv
oH T ik
~10~7 + 167K ;
and it follows from (9) that the individual change
in pressure is due almost entirely to the vertical
motion, i.0.,

2 np) = (in p)

d dp e
T hxp)/\/w-"(lnp)’ or SrALW . (36)

But here in contrast with (35) the accuracy
of the approximation diminishes with increasing
stability.

By exactly the same reasoning we obtain

do 20
&
which shows that the individual time rate of change
of density i also due almost entirely to the vertical
motion. This last relationship is often used for
the computation of vertical velocities.

Substituting (34), (37), (13), and (15) into
(18), we obta,in

(37)

o JOV 10800t
+ 5y g.HIZ' ~ 10—8gec1, (38)
and contrastmg this result with the relations
ow &V 5 ol
F ~5?-/- 5 10-3 see (39)

obtained from (10} and (11), we see that the terms
2u/0x and &v/dy comprising the horizontal diver-
gence tend to compensate. This fact helps to
explain why different methods of computation
lead to wide digcrepancies in the values obtained
for the horizontal divergence. In the first place
the magnitude of the error in the observed winds
is only one order less than that of the winds
themselves, so that the error in computing the

¢ See, for example, Panofsky (1946).
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large-scale divergence directly from wind obser-
vations will have the same order of magnitude
as the divergence ifself. But what is probably
of even greater importance is that the small-scale
motions superimposed on the large-scale systems
may have greater divergences than the large-
scale motions themselves. This is because the
small-scale motions are low level phenomena which
quickly damp out with height so that H is small
in {38), and because the lapse-rate in the small-
scale systems may approach the adiabatic so
that K may also be small.

Beers (1946) remarked that the values of the
divergence computed by Fleagle (1948) are of
the order 10-5 sec?, whereas those computed by
Namias and Clapp (1946) are of the order 10— sec1.
To explain this discrepancy one need only point
out that Fleagle’s results were based on actual
wind observations from which, presumably, the
small-scale perturbations with large divergences
were not smoothed out, whereas Namias and
Clapp’s computations were based on 5-day mean
charts from which the small-scale perturbations
are surcly eliminated. Moreover, in the latter
case, the divergence was computed by means
of the vorticity equation (42), an cquation which
can be justified only for large-scale motions.
One is apparently forced to the conclusion that
it is impossible to determine the values of the .
horizontal divergence pertaining to the large-
scale motions from instantaneous wind obser-
vations.

The approximations {29) and (35) together
with the inequality ¥V'>>W at last enable the
Eulerian equations to be written

dkvh

+kavh—‘—‘_VAp, (40)
1 op
T ez’ (41)

the formn most often used in meteorology.

It must of course be clearly understood that
the validity of the foregoing theory of approxi-
mations depends upon the correctness of the
orders of magnitude that have been assigned to
the characteristic parameters 8, H, C, V, and K.
For the most part, these values are observed to
be correct; there are, however, regions near the
tropopause in which ¥V has the order 10* m sec-1,
In such regions, the approximations are of a
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doubtful character and must be used, if at all,
with a great deal of caution. In any case, it is
advisable to test the approximations by using
the observed values of §,H,C,V, and K. It
will then often be found that though V is large
8 is also large, and the approximations remain
valid.

2. INCORPORATION OF THE GEOSTRO-
PHIC APPROXIMATION INTO THE
EQUATIONS OF MOTION.

In spite of the fact that the geostrophic
approximation is suceessfully appiied in gynoptic
practice, it has never been incorporated into the
equations of motion in an saecceptable manmer.
The difficulty can in part be attributed to the
fact that the outright use of the geostrophic ap-
proximation destroys the possibility of accounting
for changes in the motion. To neglect the
acceleration terms entirely in the FEulerian
equations is to throw out the baby with the
bath; if the motion is geostrophic and hydro-
static the acceleration is zero, and the motion
will not change.

There have been a numher of attempts
— notably by Hesselberg (1913), Brunt and
Douglas (1928), and Phillips (1939) — to over-
come this difficulty by a method which consists
essentially in the formal inversion of the operator
dy/dt 4 fk X in the horizontal Eulerian equations

a 1
Gx o= ——

One obtains an expression for p, in the form
of an infinite series of iterated individual deriva-
tives of the horizontal pressure force. But in
addition to the fact that this series has not been
shown to converge, it is doubtful whether the
terms retained in practice provide an acceptable
approximation to the wind. In the case of the
Brunt-Douglas isallobaric approximation, Haur-
witz (1946) has shown that they do not; and
though it seems possible that the inclusion of
more terms would yield a better approximation,
there is evidently a meed for a more justifiable
approach to the whole problem.
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The failure of the geostrophic approximation
as a means of calculating changes in the motion
is traceable to the fact that it fails to provide a
valid approximation to the horizontal divergence.
We have seen from (38) and (39) that the two
terms du/dxr and dv/dy comprising the horizontal
divergence are individually one order greater in
magnitude than their sum. If these terms were
approximated, as by the geostrophic wind, with
an error less by only one order of magnitude
than the terms themselves, the error would have
as great an order of magnitude as the horizontal
divergence itself.® On the other hand, an appli-
cation of the scale theory of approximations
shows that the horizontal wind v, may be replaced
by the geostrophic wind

k

vy=§'f.‘>< Vi

in all other terms occuring in the equations of
motion. These circumstances suggest that the
way to incorporate the geostrophic approxima-
tion is to eliminate ;- v, from the equations of
motion and then introduce the geostrophic
approximation v, = p,. Now the horizontal di-
vergence occurs implieitly in the horizontal
Eulerian equations as well as explicitly in the
equation of continuity. This may be shown by
deriving the equation for the vertical component
of vorticity £. Thus by taking the horizantal curl
of (40) we obtain

gf((;—i‘f) +E+HViem =—--k-\7h(£\) X NP,

T {42)
which now contains 7, v, in explicit form. Since
the geostrophic approximation is valid for all
terms except Vi-vs, the elimination of V,-v.
from (4) and (42) will yield an equation in which
the geostrophic approximation may be consi-
stently introduced; and this equation, together
with the adiabatic equation (3), the hydrostatic
equation (29), and the geostrophic equations {28),
will constitute a dynamically consistent set of
equations which may be used to study the large-
scale motion of the atmosphere. However, in-
stead of proceding with the direct elimination

¢ The fact that owing to the coordinate approxi-
mation used the horizontal divergence here used is in
error by an amount (v/R) tan @, with ® the radius of the
earth, does not effect the reasoning; for this term has
also the order of the horizontal divergence (10-¢ sec-).
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it will be more convernient to derive an equivalent
gystem of equations by a method whick has the
additional advantage of furnishing a greater
insight into their physical significance. For this
purpose we derive a theorem whose approxi-
mate form was first given by Rossby (1940).
We consider two .isentropic surfaces in-
finitesimally close together and characterized by
 the values 6.and 6 + 86 of the potential tempe-
rature. ' A cylinder with sides perpendicular to
these surfaces and with infinitesimal cross-section
cuts them in the congruent closed curves dc
enclosing the infinitesimal areas 4. If we denote
the vertical distance between the surfaces by dn,
then d4dn is the volume and g84dn the mass
enclosed by the part of the cylinder contained
. within the isentropic surfaces. The law of con-
servation of mass requires that pd4 n be constant
durmg the motion. Now the circulation theorem
“of V. Bjerknes states that the time rate of change
of absolute circulation around dc is equal to the
number of pressure-volume solenoids enclosed by
the curve, which in this case is zero because the
curve is always contained in an isentropie surface.
But the circulation around an infinitesimal curve
is equal to the area enclosed by the curve times
the absolute vorticity component perpendicular to
the plane of the curve —in the present case
to ¢gd4, where qg is the absolute vorticity compo-
nent perpendicular to the isentropic surface.
Hence ¢ 04 is constant, and since we have
* established that ¢d4dn is constant, we may con-

o clude that g4/oén is also constant. Since, moreover,

86 = (86/6n) 8n is constant for isentropic motion,
we' finally obtain that (86/4n) (gs/e) is a conser-
vative quantity, or, in differential form, that

d (ao qe) 0.

dt \am o (43)

It is noteworthy that the only assumptions made
in"deriving the above equation of conservation

. . are that the motion is isentropic and frictionless.

, Since (43) does not contain the horizontal
~ divergence, it may be used together with (5), (28)
~-and (29) in place of the system consisting of the
:f..equa.txon obtained by elimination of A;-p, be-
tween: {4)and (42) together with (5), (28), and (29)
Before proceding further we shall derive &
lification of (43). Writing
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06\% [96\2 [06\* [08\%
o= & B
and utilizing (8), (9), and (32), we have

1ah\2 106\ fpe leat.

e%}~(7ay) g~ 107
(130 K* o-opm-t “4
'Efa—z)NEﬁ T

which show that 28/on may be replaced by 86/éz.
We may therefore write
d o6 99
dt (az )
in place of (43); or, in view of the hydrostatic
relationship (29),

(go)r _ {g0)o
(9p)y  (9p)o’
where dp is the difference in pressure, measured
along a vertical, between the two isentropic sur-
faces with potential temperatures 0 and 6 + &6
respectively, and the quantities (6p),, (gg)e, and
{8p), (go), refer to the values of dp and gyat two
different positions of a moving particle. If we
choose a standard value for (dp),, then (gg), is
constant for the motion, and shall call it the ab-
solute potential vorticity to conform to the
terminology introduced by Rossby (1940).
Equations (5) and (45), together with the
stipulation that g, and v, are to be evaluated in
terms of p by means of (6), (28) and (29), are the
mathematical expressions of the following physical
principle: fhe motion of large-scale atmospheric
disturbances ts governed by the laws of conservation
of potential temperature® and absolute potential
vorticity, and by the conditions that the horizontal
velocity be quast-geostrophic and the pressure quasz
hydrostatic.
For purposes of numerical integration it is
necessary to eliminate not only the horizontal
divergence from the equations of motion — as

=0 (45)

(46)

_has been done — but also the vertical velocity

component, for the later quantity likewise can
not be evaluated with the neoessary acouracy

¢ It is evident that the potential temperature in
equations (5) and (45) may be replaced by any other
conservative quantity. In practical applications it may
be preferable to use the wet-bulb potential temperature,
for this quantity is conserved in both dry and saturated
adiabatic processes. To do this would of course neces-
sitate a knowledge of the water vapor distribution in
the atmosphere.
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from the available data. To eliminate w a further
simplification of (45) is required. If p, denotes
the absolute velocity, we may write

g6 = (V Xv,-0)/(20/én)

o6 o6 o8 96

26 29
= ol T Oaylen

3z/3n

where g,, g,, and g, denote respectively the z, y,
and z components of absolute vorticity. By (9—13)
and (34) we have

dw i -3 -1 .
g’—@_a_z_Nm sec™1;
@ = g—?——ﬂ-{—2.!”cosgp—wI(}"”sec-1
@ = %—g—;ﬁ—}—? Osingp ~ 10-4 sec—;

and taking these magnitudes together with those
of (44) we see that g, may be replaced by ¢,
with a negligible error, Hence (45) may finally
be written

W )

dtigz ¢ |

Now if the individual derivatives in (5) and (47)
are expanded, we may eliminate w to obtain

pb i)

A do 8 ¢ 51
2z dt \oz )

i % o )=0’ (48)

e
which, when g and p; are expressed in terms of p
by means of (28) and (29), is alone sufficient to
determine the motion.

Since (48) involves only p as dependent
variable, and is moreover of the first order in f,
its integration requires only a knowledge of the
initial pressure distribution. This circumstance
makes (48) particularly well-adapted for numerical
forecasting. Indeed, some such equation or system
of equations is necessary; it is quite illusory
to suppose that the primitive equations (1—5)
can be used for numerical forecasting for the
reason that neither the horizontal acceleration
nor the horizontal divergence pertaining to
the large-scale motion can be evaluated from
the observed data. ‘

The evaluation of [ in equation (48) is facili-
tated by the following approximation. Taking
the horizontal curl of (28) we obtain

Geof. Publ.
[k Tip
{=R X=XV ):.___
VX e VP of
_Vip Vg 1df 12p
of o fdyefdy
Now from (9—11), (28), and (31), we have
Vip g fV IV 10~ sec,
ef e
_ldfgiop  w 2Qeosp VL
T fdy l@f 3.1/) 30sing R R ~ 108 sec
£ ~ 10— sec~1

where N is the radius of the earth. It is then
seen that the last two terms in the expression
for { can be ignored in comparison with the
first, so that we have

t P 1{

Y of T eof

This expression for ¢ has an advantage for

numerical calculation over those in which ¢ is

expressed in terms of the wind field, for the

operations of calculating wind components are

eliminated. Thus if 2 denotes a small space in-
crement, we may write simply

apJ

2xt ' oyt (49)

4
{= h’_gf(p_p)’ (50)
where § is the mean of the pressure values at
the points (x - %, %), (x — &, y), (=, ¥ + &), and
(, y —A&).

A single equation analogous to (48) for the
case of barotropic motion cannot be derived by
specialization of (48) because of indeterminacies
that arise. It i3 necessary to return to the
basic equations. Since g is a function of p in
a barotropic atmosphere, and since p, is nearly
independent of height, it follows that (40) is
almost exact and that (42) may be written

d

2E+HN+CE+NTm=0. (D)
If further the equation of continuity (4) is
written

a 2
-;}—f =—~ev»-vh-—5;(9w)

(52)
and integrated from the ground to the top of
the atmosphere, we obtain, when the ground is
assumed level,
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by _

dt
Here use is made of the facts that p, is independent
of height and pw vanishes at the ground and at
the top of the atmosphere. The quantity p,
denotes the pressure at the ground. Elimination

of 7x-vs between (51) and (53) then gives

s (C +f )

ar\
This equation suffices to determine the motion

providing we add the condition of geostrophic
balance,

= Py Vi Us- (53)

(54)

Vi AV ¥ 1
vy =k X —3 =k X -5~, 55
. ol f (55}
where g, is the surface density and = the baro-
2
Opa

tropic pressure function It follows from

“-o_o’.
(55) that vs- 7t = 0, so that we have
{+fon

d;
T(C-i—f):ﬁ;’é;» (586)

where 7T, is the ground temperature.

The linearized form of (48) for small per-
turbations in a barcclinic zonal current % (2)
with constant lapse rate is found, with the aid
of (49), to be

- vietp' | &p\ | &y op’
(* MMW*@ W“Wﬂ
idf  dm 1 dmyop
P @t EEw = 67

where primes denote perturbations, bars denote
undisturbed values, and

z:_-_g_??—:_l —
»y ”az""-j.‘-‘(yd 7),
.y

g
__29p 1
¢ =ZFatE

The quantity » is the frequence of a buoyancy
oscﬂ]a.tzon and H is the height of a homogeneous
atfosphere with surface temperature 7.

In case the motion is independent of the
y-coordinate, s somewhat simpler form of (57a)
can be obtained by changing the dependent
variable from p to ». By differentiation of (57a)
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with respect to z and use of the geostrophic
relationship 2p'/éx = gfv’, we obtain

M ARETLY. . 1
b+aﬂfw+@"ﬁﬂ (57b)
widf d@ , 1dE\d

+ﬁ@—@ HM =9

where it is assumed that f and df/dy are to be
replaced by suitable mean values.

" In a similar manner the linearized form of
(56) for a constant zonal current is found to be
KRR I SR A 4.3 X 4
at oxjloz® ' oyt  dyox (5§a)
or, when the motion is independent of g, in
terms of o',

0 df o’ fy &

(ﬁ+%Jw+@a“ﬁﬁr‘

In the next section it will be demonstrated
by applying (57b) and (58b), the linearized forms
of (48) and (56), that the simplified equations
(48) and (66) act as filters to eliminate the
meteorologically insignificant wave components
{rom the equations for baroclinic and barotropic
wave motion.

. (68b)

3. APPLICATION OF THE SIMPLIFIED
EQUATIONS TO WAVE MOTION.

Let us first consider the case of wave motion
in a constant barotropic zonal current, This
problem has previously been treated by Rossby
(1939) and by Holmboe (1945). The frequency
equation is found to be
I* ¢

QU U VR L. A—
©T wrgH,—(a—c)®’

- (89)
when the motion is assumed to be quasi-hydro-
static and the velocity independent of the
y-coordinate. Here 2 is the mean zonal wind,
¢ the wave-velocity, 7', the mean surface temp-
erature, and u and wu, are defined by

o

Rl Y
&

I s
60
g (60)
c d y)
where L is the wave length, and it is understood
that f and dffdy denote mean values.

In the derivation of (59) it is specified only
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that the waves be simple-harmonic vibrations
traveling in the z-direction. The solution of (59)
must therefore yield the velocity of the quasi-
hydrostatic gravitational waves as well as the
velocity of the meteorologically important in-
ertially-propagated long waves first studied by
Bjerknes (1937) and Rossby (1939)." And indeed
it can be shown that two of the roots of (59)
are closely approximated by those of

= gH,, (61}
the equation for the velocity of gravitational

waves in a barotropie current on a non-rofa-
ting earth, and the third by that of

{fn — c)?

f—C—u, = (62)

S,
uigH, "
an equation derived from (59) by use of the
inequality

(& — o)

1>> i,

stating that the relative veloeity of the long
inertially propagated wave is small compared to
the gravitational wave velocity. Since the latter
is equal to {RT,)t and therefore has the same
order as (s RT,)}, the velocity of sound, the
approximation is surely justified.

Now it may be inferred from the fact that f
does not appear in (61) that the rotation of the
earth exerts virtually no influence on the propaga-
tion of external gravitational waves and conse-
quently that the gravitational wave motion is
non-geostrophic. Then, since (58 b) is designed to
govern only the large-scale quasi-geostrophic
motions, we should expect it to filter out the non-
geostrophic gravitational wave components from
(59) and reduce directly to (62). That it does so
can be seen by introducing the wave expression

Py = Yelulz—ch

into {58 b); we obtain

(63)

— 2 (u—c)V—}-z;z 4 V—{—zuiH—cV-—O

ar
2

-t
B—Cc—u = ;‘*’E—H‘: c,
which is identical to (62).
A more general verification of the effective-
ness of the simplified equations for excluding

7 Sound waves are excluded by the hydrostatic
assuraption. .

. Geof. Publ.

meteorological “noise” is obtained by applying (48)
to wave motion in a baroclinic zonal current. It
was shown in DLW (pg. 147, eq. 58) that the
motion of small amplitude waves of infinite lateral
extent is governed by the equation

d*¥

(‘zt»c)d2 g E—z————]—énz(ﬁ——-c—uc)V-%—
1 du
typ V=0 (64)

where V is the amplitude of the v'-wave, i.e.,

o' = V (2) eintz—et), (65)
Equation (64) was obtained by a systematic use
of the inequality

1>>(2zc/f\ (1‘)2

where N; is the frequency of an horizontal
inertial oscillation, and » the frequency of the
long wave. This inequality has the effect of
eliminating gravitational waves and indeed all
waves whose frequency is of a higher order of
magnitude than that of an horizontal inertial
oscillation. But these are precisely the waves that
are excluded by the geostrophic approximation
(cf. equation (24)). We should therefore expect (64)
to follow directly from (48). That it does so is
seen by substituting (65) into (57 b), the linearized
form of (48); it is found that the resulting equation
reduces exactly. to (64).

4. THE PROGNOSTIC USE OF THE
TENDENCY EQUATION.

If the equation of continuity in the form (52)
is integrated with respect to z from 0 to o, we

obtain the so-called tendency equation
0

a o
gf'éf—dz—-—&:—-gfvh omdz

[

(686)

where, as before, p, is the pressure at the ground,
which is assumed to be level. Equation (37),
combined with the equation of continuity, implies
that 2p/o! is lower in order of magnitude than
Vi * 0V, whereas (66) states that the z-integrals
of these quantities are equal. It must follow,
therefore, that the magnitude of the integral on
the right of (66) is at least one order smaller than
the magnitude of either its positive or negative
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parts, 1.e., the pressure tendency is a small differ-
ence between the two large quantities — the total
horizontal mass convergence and the total hori-
zontal mass divergence. Since neither of these
quantities can be evaluated with the necessary ac-

" euracy from wind observations (see last part of
sec, 1), we must abandon the idea of using (66)
in its primitive form as a prognostic tool and seek
a more suitable reformulation.

Since 2p,/é¢ will always be small compared to
the individual terms on the right of (66), we shall
begin by setting it equal to zero; we obtain

w

S Vucovs 8z =0. (67)

[ .
This equation is of course dynamically inconsi-
stent zince it states that the pressure change is
zero, but it can be used as an approximation as
long as it is not intended as a means for calculating
pressure changes. It states that the total hori-
zontal. mass divergence in a  vertical column
extending from the ground to the top of the
atmosphere is approximately balanced by the
horizontal mass convergence. Equation (67) can
be transformed into a more useful form in the
following manner. By applying the scale theory
of approximations we find that the right-hand
term in {42) has the order of magnitude 10~ sec?,
whereas the left-hand terms have the order
10-1% sec~2, Also if the integrand in (67) is expanded
to give

Tre o0 =0 Va Oh -+ s V0
it is found that the density advection term is
one order of magnitude less than the divergence
term. Hence we may write (42) in the form
B+ ) =—Tim,

and (67) in the form
e ¢]
‘fgvh-vhéz = 0,
¢

Then, by combining the two equations, we gbtain
0

@©
d
af g+ b= — 1 [ Bin 47 0p=009)
Po

which states that the mean value of the individual
. logarithmic derivative of the absolute vertical
vorticity component, averaged with respect to
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pressure from the bottom to the top of the atmo-
sphere, is zero.

The last equation derives its usefulness from
the fact that it may be used to determine the
speed. of propagation of a system of streamlines
from an empirical knowledge of the geometrical
shape of the streamline pattern alone. Thus by
supposing, to a first approximation, that the
system is moving with a constant speed ¢ in the
fixed direction specified by the unit vector n,
we have
gf— =-—cn- Vi,
and if this relation is substituted into (68), we
obtain

g

en- I __ o (G )
f[('&‘f oy J()p 0,

Po
or

e n, |
fyi'ign_*(—sf‘i"f)ap’ l

s

0 B °
LAY/ 1Y
pf Fay P ‘

The velocity ¢ may be evaluated by numerical
integration from observed streamline patterns or
by integration of a suitable idealized model of
the observed patterns.

The utility of (69) may be illustrated by
using it to determine the velocity of both infinite-
simal and finite amplitude long waves. In the
case of long waves of infinite lateral extent in a
barotropic zonal current, the horizontal velocity
field is independent of height, and substitution
of v = Vexp i u(x—ct) into {69) gives, by the
method of small perturbations,

g =

B—C— % =0, (70)

which is the same as (62) except for the absence
of the small right-hand terma. This term is the
contribution of ép/dt in the tendency equation,
and it can be verified that it is smaller in order
of magnitude than the left-hand terms.

Again, if the amplitude factor V in (65) is
assumed to be a function of z, substitution into
(69) yields the following formula for the velocity
of baroclinic waves of infinite lateral extent
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moving in the z-direction and imbedded in a
variable zonal current % (z):

0
Javsp
)‘;0 .
YR
Jvep
P
This equation is not the complete solution
to the equations of motion because ¥ is undeter-
mined (an expression for V is derived in DLW
under the assumption that u is a linear function
of z). However the equation is well-adapted for
numerical integration from the observed distri-
butions of V and u (see also DLW, pp. 146—147).
If the phase of the wave changes with height,
¥V and ¢ are complex numbers and the wave is
damped or unstable.

The velocity of waves of finite lateral extent
can be found in the same way. Assuming

e = "“uc-

2ni
AR T g
[ R el

u=u)—2 5 €os 55 ¥,
27 (72)
S 2lB@ T
v = n=g—e sin— ¥,
and substituting in (69) and (67), we obtain
[ [
jA ~ B .
Sip+mm [po
c':?o",;a. B _JOOA P
Jeae  [lnrme
% %
and
. a )
JSa—Bep=o. (74)

7o
The streamlines corresponding to (72} are repre-
sented in fig. 1 by dashed lines.

(711)

Geof, Publ.

If the atmosphere is barotropic, 4 and B are
independent of z, and (73) together with (74)
reduces to ’

which is identical to the original equation derived
by Haurwitz (1940). .

If the restriction that 4 and B be small is
removed, % and v in (72) may be taken as the
velocity components of a wave of finite amplitude.
We make use of the fact that f>>{, which
follows from (9) and (39). It is then found that
(72) always satisfies (67) and (68) providing
(a) ¢ is given by (73), (b) L = D, and (¢} 4 and B
satisfy {74). By a proper choice of 4 and B, subject
to restriction (c), the streamlines can be made
to approximate the typical structure of a young
eyclone wave with closed streamlines at low
levels and open streamlines aloft. An example
of the type of pattern that can be obtained is
shown in fig. 1. The dashed curves represent the
high level streamlines, and the solid curves the
low level streamlines. The change in phase of
the streamline pattern with height is obtained by
assigning complex values to 4, B, and s.
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