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Abstract 
An obstacle to the use of the primitive hydrodynamical equations for numerical pre- 

diction is that the initial wind and pressure fields determined by conventional means give 
rise to spurious large-amplitude inertio-gravitational oscillations which obscure the nieteoro- 
logically Eignificant large-scale motions. It is shown how this difficulty may be overcome 
by the use of a relationship between wind and pressure which enables one to determine 
thesc fields in such a manner that the noise motions do not arise. The method is illustrated 
by a numerically computed example. 

The wind-pressure relationship is in a sense a generalization of the geostrophic approxi- 
mation and may be used where the latter approximation is inapplicable, either to determine 
initial conditions or  to derive a set of filtering equations for numerical prediction analogous 
to the quasi-geostrophic equations. 

I. Introduction 
The recent widespread revival of interest 

in numerical weather prediction has been 
brought about partly by the development of 
high-speed electronic computing apparatus 
but also, to a large extent, by the very en- 
couraging early results obtained through 
systematic use of the geostrophic approxima- 
tion in what has come to be known as the 
quasi-geostrophic equations of motion. In 
these equations it is assumed that the wind is 
and remains nearly geostrophic, at least 
enough so that the horizontal acceleration 
terms in the equations of motion may be 
approximated by the accelerations of the 
geostrophic wind. Numerical integrations of 
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these equations have already yielded forecasts 
comparable in accuracy to those produced by 
conventional methods, and probably superior 
in accuracy in the case of new developments. 
In purely theoretical investigations the use of 
the geostrophic approximation, by automa- 
tically filtering out high-frequency “noise” 
disturbances, has aided greatly in the under- 
standing of the physical properties of large- 
scale flow systems where the high-frequency 
inertial effects are unimportant. 

Yet those who have participated actively 
in this work are aware that this is barely the 
beginning of a new era, an era in which 
numerical methods will find increasing applica- 
tion in practical and theoretical meteorology, 
and that the quasi-geostrophic equations are 
but a first approximation to the equations 
which will eventually be used to describe the 
atmospheric motion. Experience has already 
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revealed systematic errors attributable to the 
geostrophic a proximation. The approxima- 

ward over the United States, and does not, 
apparently, permit the development of frontal 
discontinuities. It is of course possible to 
arrive at higher approximations by successive 
iteration of the geostrophic approximation, 
but this process, besides leading to severe 
mathematical complications, is valid only 
when the geostrophic deviations are small in 
the first place. Moreover, the time order of 
the equations is increased by one with each 
iteration, and since the time order cannot 
exceed three, it is evident that the sequence 
of approximations would not be convergent. 

In any case it is likely that in the process the 
simplicity and elegance of the geostrophic 
approximation would be destroyed, and 
thereby also the reason for its introduction. 
One is therefore led to reexamine the possibility 
of using the primitive Eulerian equations, as 
Richardson1 first proposed. 

The difficulty here, as I have pointed out in 
previous papers, is that the initial values of 
wind and pressure cannot as a rule be prescribed 
independently with sufficient accuracy. One 
is apparently forced again to introduce for 
the wind values either the geostrophic approxi- 
mation or something very little better. As will 
be shown later this not only introduces an 
initial inaccuracy but gives rise to spurious 
inertio-gravitational oscillations which obscure 
the meteorologically significant motions. The 
purpose of the present note is to show that 
accurate initial winds can be determined from 
the pressure field alone, and that if this is done 
inertio-gravitational oscillations will not arise. 

II. Characterization of large-scale atmospheric 

We shall deal with statically stable motions 
in which the horizontal scale far exceeds 
the vertical scale. It is therefore permissible 
to assume that the motions are in quasi- 
hydrostatic equilibrium. If f is the coriolis 
parameter 2 SZ sin (latitude), V a characteristic 
horizontal velocity, and S a characteristic 
horizontal scale distance, the ratio of the inertial 
force to the coriolis force is in order of mag- 
nitude the non-dimensional Rossby number 

tion tends to B isplace depressions too tar north- 

motions 
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V!fS. The motion is said to be quasi-geo- 
strophic if this number is small compared to 
unity. There are, however, cases where either 
because I/ is large or S is small the Rossby 
number is not small. Nevertheless the large- 
scale meteorologically significant motions are 
distinguishable from the inertio-gravitational 
oscillations, the other class of possible quasi- 
hydrostatic motions. We  shall arrive at the 
required method for determining the horizontal 
wind field by asking for their distinguishing 
characteristics. 

There are essentially two types of small 
amplitude wave perturbation of an atmosphere 
moving with constant angular velocity. They 
are distinguished by their frequencies and speeds 
of propagation. The meteorologically impor- 
tant type is characterized by small frequencies 
and by velocities of propagation of the same 
order of magnitude as the speed of the im- 
bedding current. The second type has frequen- 
cies in excess off; periods less than a half pendu- 
lum day, and velocities of propagation of the 
order of (gHV In H/3z)x, where His  the verti- 
cal scale height of the disturbance and H is the 
potential temperature. For the large scale dis- 
turbances of the atmosphere H - 104 m and 
2 In H/2z - I O - ~  m-l. Hence (gH23 In 0/2z)% - 
- ($gH)’- IOO m/sec-1, which is much 

gre‘ater than the speed of the wind in the 
troposphere and very much greater than the 
speed of propagation of the observed large- 
scale systems. Even when the motions are of 
large amplitude and therefore not linearly 
superposable solutions of perturbation equa- 
tions, a distinction can be drawn between the 
two types, at least in orders of magnitude of 
frequency and velocity of propagation. 

From what can be inferred from available 
observations the bulk of the energy in the 
troposphere is confined to the first class of 
motion. This partition of energy may be 
attributed to the circumstances that the 
principle energy sources in the atmosphere 
have characteristic periods lar e compared to 
the pendulum day and there s ore excite little 
of the second type of motion and that the 
first type is stable with respect to whatever 
perturbations of the second type are excited, 
either direct1 by the external sources of 
energy or inirectly by nonlinear interaction 
with the first type. 
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111. The balance equations 

Let us now examine the order of magnitude 
of the horizontal divergence in the meteoro- 
logically important systems-systems that are 
characterized by particle velocities and speeds 
of propagation small compared to the gravity- 
inertia speed (gH2alncY/az)%. If a flow is 
quasi-geostrophic it can be shown by the use 
of dimensional arguments' that the ratio of 

v 

au av 
ax av 

the horizontal divergence -+- to one of 

its component terms, say au/2xx, is just the 
Rossby number and therefore this is small. In 
the case where the Rossby number is not small 
the ratio is found to be V2/gH2a1n H/az 
and is therefore again small. Thus the sig- 
nificant motions of the free atmosphere are 
characterized by small horizontal divergences, 
and we may therefore express 14 and v in 
terms ot a stream function- 

(% av 
oy ax, , v =- I t =  -- 

It may furthcr be shown that the convective 
acceleration terms involving w in the horizontal 
equations of motion are smaller in order of 
magnitude than the remaining convective 
acceleration terms. If we omit these small 
terms, substitute the stream function ex- 
pressions for u and v,  and take the horizontal 
divergence of the equations of motion, we 
obtain, when pressure is used as the vertical 
coordinate, 

where cp is the geopotential. The above equa- 
tion, which shall be called the halance equation, 
suffices to determine the horizontal velocity 
field if the field of geopotential is known. 
This equation is of the Monge-Ampere type 
and can be solved for y as a boundary value 
problem providing 

!!Y+f>O 
f 2  

v2p .  
i.e., if the geostrophic relative vorticity ~ is f 
greater than - f/2. If the non-linear terms are 
small we obtain the geostrophic approximation 

by integration. In this sense the balance equa- 
tion is a generalization of the geostrophic 
approximation. Both determine the velocity 
from the geopotential. 

Now it is characteristic of the inertio- 
gravitational motion that the horizontal diver- 
gence is not relatively small. Hence if the u 
and v ,  whch must be prescribed independently 
in the primitive quasi-static equations of 
motion, are determined from the balance 
equations, the inertio-gravitational motions are 
automatically excluded initially, and since 
they are not generated to any appreciable 
extent during the motion, they will never 
appear. 

The balance equation has been derived by 
Fjplrtoft (unpublished work) in an independent 
investigation as a necessary condition for the 
stability of the non-divergent flow with re- 
spect to perturbations with horizontal diver- 
gence. The neglect of the divergence terms 
in the divergence equation has been justified 
empirically by S. PETTERSSON~ who finds them 
to be one to two orders of magnitude smaller 
than the remaining terms. 

Iv. Illustrations of the use of the balance 

I had thought at one time that the use of 
geostrophic 11's and v's as part of the initial 
specification of the flow would lead at most 
to small amplitude high-frequency inertio- 
gravitational fluctuations superposed on an 
essentially correct low-frequency trend motion. 
However a recent numerical integration of 
the non-linear Eulerian equations for a baro- 
tropic atmosphere carried out in collaboration 
with B. Bolin led to the suspicion that large 
amplitude inertio-gravitational perturbations 
can and do arise. In retrospect this is not 
surprising, for although the initial divergence 
of the geostrophic wind is zero or nearly 
zero, the first time derivative will not be zero 
since the balance equation will not be satisfied. 
The experiment was not conclusive because 
the fluctuations could have been due in part 
to computational instabilities arising from in- 
correct boundary conditions. (The boundaries 
were geometrical surfaces immersed in the 
fluid.) To investigate the matter further and 
to verify the filtering properties of the balance 

equation 

* Charney, J. G., Gcof. Publ. 17, No. 2, 1948. Tellus, 5 .  No. 3,  1953. 
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equation the following numerical experiment 
was recently performed in Princeton : 

Initial conditions were prescribed for the 
flow of an atmosphere consisting of two 
homogeneous incompressible layers of different 
density bounded above and below by rigid 
surfaces. The lower layer was assumed to be 
so deep that its motion could be ignored. The 
upper layer would then move as though it 
were a single layer with a free surface .. but with 

gravity reduced in the ratio ( I  - c), e’ and 
n 

\ C I  e being the densities of the upper and lower 
layers res ectively. This was done to simulate 
the actua P static stability of the atmosphere. 
The mean thickness of the upper lay& was 

taken to be Hand I - -- ) was chosen to equal 

Haln tj/az for the actual atmosphere, i.e., 
about 10-1 .  In this way the buoyancy forces, 
as well as the speed of the internal gravity 
waves, became comparable to those in the 
actual atmosphere. The coriolis parameter f 
was taken to be constant and was set equal to 
10-4 sec-1 corresponding to a latitude of 
about 43’. The motion was assumed to take 
place in the x ,  y plane between the rigid 
lateral walls y = 0, y = D. 

The initial velocity field was prescribed by 
the periodic stream function 

c 

2nx 7dy y = A sin - sin 

with L = 4,000 km and D = 2,000 km and 
um,=v,,=2nA/L = 5 0  m sec-l. To check 
first that the balance equation did indeed 
exclude inertio-gravitational motions the initial 
values of the thickness field k were determined 
from the balance equation, which in this case 
took the form 

where p = g ( ~ - $ ) k .  

Since v, the y-component of velocity, is 
zero at y = o and y = D, the second equation 
of motion 

dv - + f U =  -- Jv 
df aY 
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yielded the side condition 

at y = o and y = D. The solution of the 
balance equation subject to this condition was 
found to be 

2nx ny 
L D  

H+Afsin-sin- + 

It is eas to show that if the divergence had 
vanishe B exactly the motion would have been 
exactly stationary. Since the use of the balance 
equation was supposed to prevent the occur- 
rence of large divergences it was to be expected 
that also in the present case the motion would 
remain nearly stationary. This was found 
to be so for a forty-eight hour period to 
within the limits of a quite small computa- 
tional error. 

A numerical integration was next performed 
using the geostrophic initial conditions 

( lnitiol velocities geostrophic) 

t 
0 2 4 6 8 10 

Fig. I .  Variations in time of kinetic and potential energy. 
t (hrs)  
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which of course also satisfy the boundary 
conditions fu = - 2y/Jy at y = o and y = D. 
In this case large divergences ocurred which 
in turn produced large potential energy 
changes according to the formula 

L D  
dP - =-“Is-. (I -,> Q‘ h2 (z Ju +$) d d y  
at 2 

0 0  

in which P is the potential energy per wave 
length. The kinetic energy was accordingly 
highly variable. Figure I shows the kinetic 
and potential energies plotted as functions 
of time. The upper curve represents the kinetic 
energy and the lower the potential energy. 
The horizontal line represents the constant 
kinetic energy in the non-divergent and 
balanced cases. 

W e  note that there is a fluctuation of some 
14 % in kinetic energy. The local fluctuations 
were considerably larger than this and must 
be regarded as errors. 

The foregoing example indicates that the 
balance condition is far more suitable for 
determining the initial wind pressure fields 
than the geostrophic condition. 

It should be remarked finally that the preser- 
vation of the velocity-pressure adjustment 
demanded by the balance equation necessarily 
entails horizontal divergences. I have merely 
attempted to show that these divergences 
must remain so small that the motion is 
approximately non-divergent at all times. 
Because the balance condition always holds, 
it is possible in principle to employ it in the 
same manner as the geostrophic approxima- 
tion. It may be taken together with the 
hydrostatic equation, the vorticity equation, 
the physical equation and the continuity 
equation as determining the motion. The 
difficulty then is that it is not possible to com- 
bine these equations into a single equation in 

as was the case with the geostrophic ap- 
proximation, and I have succeeded in solving 
them numerically only in the barotropic case 
(unpublished result). 
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