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ABSTRACT

An n-level generalization of the 23-dimensional model is derived by specialization of the complete three-
dimensional quasi-geostrophic equations. In the case n = 1, it reduces to the two-dimensional single-layer
barometric model. In the case #» = 2, it reduces to the double-layer barotropic model, or — what is shown
to be mathematically equivalent—the 2}-dimensional model. Methods of numerical integration of the 2-
and 2}-dimensional equations, and the machine requirements for such integrations, are discussed.

The results of a series of six two-dimensional and six 2%-dimensional forecasts for 12 and 24 hours are
presented. Although the 24-dimensional forecasts are noticeably superior to the two-dimensional forecasts,
it is apparent that considerable improvement will be possible with models in which there are fewer artificial
constraints. A method of integration is therefore proposed for the n-level generalization of the 2}-dimen-
sional model, and computation schemes are outlined for the general three-dimensional quasi-geostrophic
equations. The semi-Lagrangian coordinate system with potential temperature as vertical coordinate is
shown to exhibit favorable properties for machine integration. :

1. Introduction

This paper continues the line of research set forth
by the Meteorological Research Group at the Institute
for Advanced Study (I.A.S.) in a series of publica-
tions dealing with the numerical prediction of the
large-scale quasi-geostrophic motions of the atmos-
phere. The preceding articles presented a systematic
theory of the geostrophic approximation, and applied
this theory to simplified — in the main, barotropic —
models.? It has now been possible, with the use of the
ILA.S. electronic computing machine, to extend the
barotropic investigations and to begin the study of
baroclinic models. The results of these studies will be
presented in this paper.

The computational magnitude of the forecast prob-
lem, as well as the difficulty of physical interpretation,
is greatly increased by the introduction of a third
spatial dimension into the motion. It may therefore

" be expected that mathematical and physical compre-
hension will be aided by the consideration of a hier-
archy of models, in which the baroclinic effects are
introduced successively in something like the order
of their importance. Here one may proceed either
by an increasing generalization of the barotropic
model or by a decreasing specialization of the baro-
clinic model. The first procedure has been used
successfully by a number of writers. Sutcliffe (1947)
went beyond the barotropic model by taking into
account the effect of the thermal-wind variation in
the generation of vorticity. A closed system of equa-

1 This work was cosponsored by the Office of Naval Research
and the Geophysics Research Directorate, Air Force Cambridge
Research Center, under contract N-6-ori-139 with the Office of
Naval Research.

2 Charney (1948, 1949); Charney and Eliassen (1949); Charney
et al (1950); Bolin and Charney (1951).
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tions embodying this effect was obtained by Charney
et al (1950), and in simplified two-parametric form by
Fjgrtoft (1951), under the assumption that tempera-
ture changes are caused by horizontal advection alone.
Phillips (1951) introduced a double-layer barotropic
model, which did away with the advective assumption.
Finally, Eady (1952) and Eliassen (1952) devised non-
advective models, to which Eady has given the pic-
turesque title ‘‘23-dimensional’ as they — in common
with the aforementioned models -— describe the motion
of the atmosphere in terms of two dependent variables
along each vertical. Phillips’ model has the advantage
that it describes a real physical process, namely the
motion of two barotropic layers, but the disadvantage
that it relates only indirectly to the actual atmosphere.
However, it has been pointed out by Eliassen (1952)
that the models of Phillips, Eady and Eliassen become
mathematically equivalent with the proper interpre-
tation of dependent variables and constant parameters.

It can be shown that the models of Phillips, Eady
and Eliassen can be generalized to the case of » param-
eters along the vertical, or, in Eady’s terminology, to
2 + [(n — 1)/n] dimensions.® The limit for large 7
is not the most general three-dimensional model, but
is one that can be obtained from the most general
model through ignoring certain effects due to the
spatial variations of static stability and absolute vor-
ticity. In the present article, a more direct derivation
of the 21-dimensional model and its generalizations
will be obtained by specialization of the general quasi-
geostrophic equations. The advantages are that the
nature of the assumptions and omissions is more appar-

3 By taking # layers in Phillips’ model, by integl;ation through

n sublayers in Eady’s, or by considering moments to order z in
Eliassen’s.



72 JOURNAL OF METEOROLOGY

ent, that the constants are automatically determined,
and that the integration techniques can more easily
be compared with those for the general equations.

The increase in the computational magnitude of the
integration problem demands that serious attention
be given to the economy of machine storage of data
and of computation time. The storage requirements
depend partly on the amount of real information con-
tained in meteorological data, and partly on the
accumulative effect of round-off errors; in general,
more significant figures than are warranted by the
accuracy of the data must be carried to avoid con-
tamination by the round-off process. Also, for a given
size of forecast area, the amount of data to be stored
depends on the mesh size of the difference grid; and
the mesh size, in turn, is a function of the allowable
truncation error (the error due to the replacement of
the [strict] differential equation by an [approximant]
difference equation). Finally, both the storage require-
ments and the computation time depend very much
on the particular method used for solving the differ-
ence equations.*

Since the economy problem is equally present in the
barotropic model, where it can be studied with less
effort, a series of auxiliary calculations, testing round-
off error, truncation error and methods of integration,
was performed on the barotropic model and is reported
in the present article. Information gained from the
barotropic calculations was utilized in devising a pro-
gram for the integration of the 2%-dimensional model.
A series of six 24-hr numerical integrations was then
carried out, with the I.A.S. computer, for the specially
selected period 23-26 November 1950, a period in
which a severe storm developed in the eastern United
States. The forecasts were compared with a set of
barotropic predictions for the same period. From the

" results, which are set forth at length in section 5, it
will be seen that the 2i-dimensional forecasts, while
-appreciably more accurate than the two-dimensional
forecasts, and evidently comparable to the best sub-
jective forecasts, nevertheless fail to predict the upper
cyclogenesis associated with a rapidly developing sur-
face cyclone.

Modifications of the 2%-dimensional model have
therefore been considered, but the evidence points to
the need for more general models. An estimation of
the storage requirements for the integration of the
general quasi-geostrophic equations reveals that the
integration is already within the realm of possibility
for some existing computing machines, and in particu-
lar for the I.A.S. machine. It is therefore no longer
academic to consider the theoretical and program-
matical aspects of the three-dimensional integration
problem. The program formulated for the I.A.S. com-
puter is outlined in the last part of the present article.

4 An article by Platzman (1952) will be found extremely helpful

for understanding the role of modern computing machines in the
solution of meteorological problems.
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2. The 2}-dimensional model and its generalizations

We assume that the motion is adiabatic, as well as
quasi-static and quasi-geostrophic. The theory of the
geostrophic approximation then leads to the following
concise statement of the laws of motion (Charney,
1948): The flow is governed entirely by the laws of
conservation of potential temperature and potential
vorticity.® In the semi-Lagrangian coordinate system
in which potential temperature is the vertical coordi-
nate, the conservation of entropy becomes implicit;
and, as shown by Shuman (1951), the motion is
governed solely by a beautifully simple equation, ex-
pressing the conservation of potential vorticity. This
equation is discussed in the last section of this article.
For the present, however, it is more convenient to
employ a coordinate system in which pressure is the
vertical coordinate. The equations of motion in this
variable have been developed systematically by Elias-
sen (1949). ~

We adopt the following notation: p is pressure,
z height, p density, « specific volume, T absolute
temperature, R the gas constant, ¢, and ¢, the specific
heats of air at constant volume and constant pressure,
respectively, 8 potential temperature, f the Coriolis
parameter, g the acceleration of gravity, ¢ the geo-
potential gz, d/dt the individual derivative, k& the
upward-pointing vertical unit vector, » the individual
derivative of p, v the horizontal vector velocity, and
V is the horizontal del-operator applied to a quantity
which varies in an isobaric surface. In the p-system,
the energy equation for adiabatic flow may be written

dlng 9dlne dIné
= tvvhito el 0, (1)
where
In § = constant + (¢,/¢p) In p + In a. 2

An approximate form of the potential vorticity equa-
tion suitable for our purposes is (Charney, 1948,
eq. 47)

d(n a1n 8/3p)/dt = 0, (3)

where 5 is the vertical component of absolute “‘iso-
baric” vorticity; i.e.,

n=k-VXv+f: (4)

In the evaluation of 4, v and 7, we employ the hydro-

-static and geostrophic relationships,

3¢/0p + a = 0, (5)
and :
v = v, = flk X Vé. 6)
Thus,
n =, = f7V-V¢ + f, "
and

In 6 = constant + (c,/¢,) In p + In (—$/3p). (8)

% The law of conservation of potential vorticity was discovered
by Rossby (1940).
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It will be useful to write down the equation for the
vertical vorticity component,

dn,/dt + 9,V-v + k-Vo X dv,/8p = 0, 9)
and the continuity equation,®
Vv + dw/dp = 0. (10)

Using these, we see that the potential vorticity equa-
tion (3) involves thé customary approximation of
ignoring the conversion of horizontal to vertical vor-
ticity, expressed by the third term in (9). Indeed, if
one omits this term, (3) results from eliminating V-v
and dw/dp between (9), (10) and

d(31n 6/3p)/dt + (dw/0p) d1n 0/8p = 0, (11)

the equation obtained by differentiating (1) with re-
spect to p, and making use of the relationship

av,/0p-V1In 6 = 0,

which follows from (6) and (8).

The change of vorticity produced by vertical advec-
tion is an effect of the same magnitude as the change
produced by the turning of the vortex tubes. If we
also ignore this term, and replace V-v by —3dw/dp,
(9) takes the simple form

(12)

ngt Dn,/Dt = duw/dp, (13)
where the operator D/Dt is defined by
D/Dt = 3/dt + v,-V. (14)

Henceforth, we shall dispense with the subscript g,
as it will always be understood that quantities are to
be evaluated geostrophically.

A conservation equation from which the 23-dimen-
sional model and its generalizations are derived is now
obtained by ignoring, in addition, the vertical advec-
tion of the static stability term in (11). In place of
(11), we write

D(31n 0/3p)/Dt + (9w/dp) 8 In 6/3p = 0. (15)
Elimination of dw/dp by means of (13) then gives

1 Dy alne\— D /alnd

L2 (SRR o

n Dt ap D\ op
D(nd1n 6/3p)/Dt = 0. 17

In view of (7) and (8), we see that the only dependent
variable in the above equation is ¢. Therefore this
equation, together with the appropriate boundary
conditions, suffices to determine the motion of the
atmosphere.

The approximation used in deriving (15) may be
given the following interpretation: We consider two

(16)

or

8 Note that we do not approximate Vv by V-v,. The avoidance
of this pitfall is, in fact, the dynamical basis of the geostrophic
approximation.
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adjacent unit isentropic surfaces, separated by the
small pressure differential §p, and a vertical fluid
cylinder of small cross-section 84, confined between
the surfaces. Equations (10) and (11) state that the
mass 64 8p remains constant. Hence, the horizontal
divergence (84)~! d(84)/dt is the negative of the frac-
tional individual derivative of ép, (8p)~ d(8p)/dt. The
approximation (15) then states that this fractional
derivative may be calculated as though the particles
moved horizontally instead of along isentropic sur-
faces. Now the fractional rate of change of §p — or of
84 — is due to the widening or narrowing of the unit
isentropic layer. If the changes in the pressure thick-
ness of ‘this layer were small compared to its depth, we
could replace the static stability factor in (16) by its
mean value for an isobaric surface. Unfortunately,
this is not accurately the case. Nevertheless, to sim-
plify matters, we shall suppose that it is. Furthermore,
since the error that we make in ignoring the horizontal
variation of the static stability factor is no larger than
the error made in ignoring its vertical variation, we
shall replace it by a constant. It could be argued that,
by the same token, the factor appearing in the first
term of (16) should also be replaced by a constant
mean value 5. That we do not do so at this stage is
primarily for formal reasons ; we wish to obtain equiva-
lence with the layered barotropic model.

The 23-dimensional model is derived as a special
case of the following more general model. Denoting
the constant value of 9 In 8/8p by —s, and making
use of (12), we may write (16) in the form

D lnn/Dt = s 3(D In 6/D1)/dp. (18)

At the top of the atmosphere, w = dp/dt = 0; and,
since there is no special reason why @ In 6/dp should
approach zero with decreasing pressure, we have from
(1) that

. DIne
Imw=0 or lim =0
20 0 Dt

(19)

At the ground, which we suppose level, the strict con-
dition is that the vertical velocity shall vanish, i.e.,
that the horizontal individual derivative of 6 shall be
zero. However, if we set the isobaric individual deriva-
tive equal to zero, i.e., dIn0/0t = —v-VIn @ at
p = po, the mean surface pressure, the percentage
error will average less than 5 per cent. Indeed, this
is one of the better meteorological approximations.
Hence, we may put

w(ps) = 0 or (D 1n 6/Dt)pep, = 0. (20)

The lateral boundary conditions will be left for later
consideration.

Consider now a division of the interval p = 0 to
p = pointo n equal subintervals, 8p, and denote quan-
tities at the midpoint of each interval by the sub-
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script 2 (k = 1, 2, -+ -, ») and quantities at the upper
and lower end-points of each interval respectively by
kE—3ork+ 1% If weputk=1at p=1% 6p, and
k=mn at po—-~6p, the points p—O and p = p
correspond to & = % and 2 = »n + %, respectively. It

is convenient to introduce the operator D, defined by

DiQ = Qi — Qe or DyQ = Qr — Qo

We now write (18) for each of the points px, with the
pressure derivative on the right-hand side replaced by
a centered difference quotient. Thus,

(DInn/Dt), = (s 6p) L De(D In 6/Dt).  (21)
From (8), we find
(D In 6/Dt)kyy = Digy(In Deyy9)/Dt,  (22)
except for £ = 0, n. It follows that, for & = 1, #,
(D In /D) = (s 6p) [ Drs3(In Diy3¢) /Dt
— Dy 3(In Dy3¢)/Dt].  (23)

Approximating ¢ by {(ér+s + ¢x—3), we find from (6)
that .

(DZ/Dt)ryy = (DZ/Dt)rsr = (DZ/Di)s,
Z = In (¢r41 — ¢n)-
Hence, (23) becomes, for & = 1, n,

Dlnn) ( )

k 85P Dt
(=)o
Dt or — dra

where k = (sép)1 = — (6p 9 In 6/3p)~L.

At the levels adjacent to the ground and the top of
the atmosphere, we substitute the boundary condi-
tions (20) and (19) in (21), to obtain

(2). o5
Dt])1 (¢1 — ¢2)* '

(2), 2o
Dt n (d’n—l - ¢n)—‘ B

The system [(26), (27), (28)] is the required gen-
eralization of the 2}-dimensional model. With further
approximation, it can be shown to govern the motion
of an atmosphere composed of 7 barotropic layers.
We shall, however, content ourselves with showing
that it can be directly related to the two-barotropic
layer model, and therefore to all 23-dimensional models.
In the process, the similarity conditions for the two-
layer model will fall out.

Set pp = 1000 mb and let # = 2, <.e., 6p = 500 mb.
The above system [(26), (27), (28)] then reduces to

(2= (3) s

(24)

Oyl — ¢k) @5
or — b1

(26)

27)

(28)

0, (29)
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where ¢, is the geopotential at 250 mb and ¢, the geo-
potential at 750 mb. The exponent « may be written

. = ( 3 In 0)‘1 (01t;02)“' (30)

and has approximately the value 9.

The difference ¢ — ¢. is proportional to the mean
temperature in the layer between 750 and 250 mb.
Its deviation 6D (= ¢; — ¢» — D) from its mean value
D is not greater than 6 or 7 per cent. Hence, we may
write, with fair approximation,

(1 — ¢2)* = DD + « 8D),
(1 — @)™ = DD — kD).

The equations of motion then become

(_) . ._) — " _—0 (31
Dt/)1D + xdD Dt],D — 6D

Consider now Phillips’ model, an atmosphere com-
posed of two homogeneous incompressible fluid layers
of different density, confined between rigid horizontal
surfaces. Let p’ be the density of the upper fluid
and p the density of the lower fluid. Assume that
each fluid layer has the same mean depth 1H, so
that H is the total depth. Let 82 be the deviation
of the height of the interface from its mean value;
let p’ be the pressure at the upper rigid surface and
p the pressure at the lower. Then, from the hydro-
static approximation, we have (apart from an irrele-
vant constant) p = p’ + g(p — p’) 8k, or, deﬁmng

¢ =p/o,¢" ="/, e=0"/p,
(1 —¢édh=2z— ¢ (32)

The equations of motion are the potential vorticity
equations,

5 () = 5 (s
Dt\iH + )  Dt\3H —sh
where g = gf~V-Vz 4+ fand o’ = gf'V-Vz' + f. (The

operator D /Dt here applies to a horizontal surface.)

Let us now identify the quantity (1 — €) with «! =~ §,

so that e is nearly unity. Approximately, therefore,
oh = k(z — 2’). We see that (31) and (33) are iden-
tical. For we need only identify z — 2’ and H by
means of the equations

gGGH + oh) = 3gH + xg(z — &) = D + «($r—
and
gGH — oh) =
We obtain gH = 2D, and

gz — %) = ¢ — ¢ — D.

The latter relation can always be satisfied by adding
suitable constants to z and 2/, that is, by changing the

=0, (33)

_D))

3gH — «g(z — &) = D — «(¢p1— ¢— D).
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levels at which the pressure is measured in each fluid
layer. Hence, we have the result that the motions
of the 2}-dimensional model, defined by (31), are
identical to those in an atmosphere composed of two
barotropic layers whose mean thicknesses are each
equal to the mean thickness of the 750-— 250-mb
layer in the atmosphere and whose density ratio is
approximately 8/9.

Except for the case n = 2, the system [(26), (27),
(28)] is unwieldy for computation. In accordance with
an earlier suggestion, a simpler form is obtained by
replacing the factor 7 in (16) by a suitable mean value
7, and by writing

where & = @(p) is a standard-atmosphere specific
volume. An empirical justification for this simpli-

fication is given in section 5. In place of the system
[(26), (27), (28)], we obtain

D
r Dk + mu(drer — o) — Tema(e — 1) 1 =0, (34)
%

(k = 1y21 ""n))
where
0 for k=0,mn,
7 = kii(@ryy 0p) for kB # 0,nm.

Tk

(35)

3. Integration of the barotropic vorticity equation

The barotropic vorticity equation is most simply
derived as the finite-difference approximation to (18)
for the most elementary division of the vertical scale,
i.e., by taking # = 1 in the scheme leading to the
generalization of the 2}-dimensional model. We re-
place the pressure derivative in (18), at the midpoint
£0/2 of the interval p = 0 to p = po, by the centered
difference quotient

po—'l[(D In 0/Dt),,°=p° - (D In G/Dt)pﬂ],
and find from (19) and (20) that it vanishes. Hence,

D 9
Dt ] »=1p, ot p=4p,

To discuss this equation, we map the spherical earth
conformally onto a plane and introduce a Cartesian
coordinate system (x, v) in the plane. If m is the mag-
nification factor, the del operator on the earth becomes
multiplied by m in passing to the plane. Introducing
the notation V2 = 92/9x? + 9%2/9y* for the Laplace
operator in the plane and J(e; 8) = d(e, 8)/3(x, ) for
the Jacobian of @ and 8, we may write (36) in the form

n = f7m* V¢ + f,
vi(a¢/31) = J(n, 9),

|

(36)

@37
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or in the form

Vi¢ = §,
1 = f7m% + f,
ot/at = J(n, ¢).

The integration procedure depends essentially on
whether one chooses (37) or (38) as the governing set
of equations. Although the two are mathematically
equivalent, they lead to different computation schemes:
in the first, the history of the motion is carried by ¢;
in the second, it is carried by &.

Method of solution A.—The following computations,
leading from time ¢ to time ¢ 4+ Af, are performed.
Starting with ¢*2¢ and ¢*:

(38)

1. Calculate (9£/9t)* from the difference analogue of
(0g/00)t = J(f'm? V¢t + f, ¢%); (39)

2. Solve for (8¢/dt)t from the difference analogue of the
Poisson equation,

V2(3¢/0t)t = (3E/d1)%; (40)
3. Calculate ¢t*2¢ from
oAt = gtAL 4 2 A (3g/01) @n -

Method of solution B.—Starting with £~4¢ and £*:

1. Solve for ¢! from the difference analogue of the Poisson
equation,

Vgt = & @2)
2. Calculate (9£/9¢t)t from the difference analogue of

(3g/8)t = J(m2f-1gt + f, ¢%); 43)
3. Calculate £+ from

ETAL = gt 4 2 At (aE/at) (44)

Procedure A was used by Charney et al (1950), in
an article entitled ‘‘Numerical integration of the baro-
tropic vorticity equation” and hereafter designated
by the abbreviation NI. They showed that the bound-
ary conditions on (37) or (38), for a region bounded by
a simple closed curve, are: ¢ must be prescribed on
the boundary for all time; # (or £) must be prescribed
as a function of time when fluid is entering the region,
but must not be prescribed when fluid is leaving the
region. From the geostrophic relationship, it can be
seen that influx or efflux is determined by the tan-
gential derivative of ¢ on the boundary, taken in
the proper sense, and therefore is determined by the
boundary values of ¢. The simplest condition on ¢
is that it be constant with time. For short periods of
time, this rather unrealistic condition will not greatly
affect the internal motion. For longer periods, a sub-
jective forecast for the boundary could be used, or
else a method which will be described in a subsequent
paragraph.

The stipulation ¢ = constant implies the homo-
geneous condition (d¢/0%)t = 0 on the boundary for
the Poisson equation (40). With this condition, and
with a rectangular boundary, the Fourier transform
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method is well adapted to a computer with a small
variable-storage capacity, such as the Entac. This
method will now be briefly described.

We define a rectangular grid of points by the coor-
dinates

x = 1 As, 3’=J'AS, (izO:Ir"'yp;j=0111"',9)v

and denote quantities at the point 2, j by the subscript
ij. In the same manner, we replace ¢ by 7 A¢, so that
r has integral values. Using centered space differences,
we replace the Laplacian of a quantity Q by the finite
difference approximation

ViQ = (A8)2(Qusr1 + Quimr + Quvij + Qi — 40Q4).
Equation (40) becomes

vi,-(a_"’ '=(3_5)T, =522 bi g
ot ot/ i i=12,--,q—1),
and the boundary conditions become
G).-(Z).-(G).- ().
at /s 0t / pi ot / « /)i
(G=0,1,---,p; j=0,1,---,9). (46)

Because.of the homogeneity of the boundary condi-
tions on d¢/8¢, we may represent (d¢/dt) by the finite
sine series

9 T p~1 g¢g—1 3 mi
(—j’- =3 X almsinlr—sin—r—z,

0t/ i =1 m=1 p q 47)
(”:=111P'—1!]=1'!q_1)'

Substitution into (45) then gives, after some reduction,

p—1 o1 Lowlh | mmj OE\ "
—4(As) Y. 2 Cim@msin—sin — = (— , (48)
=1 m=1 P q at ij

where ¢, = sin? (xl/2p) + sin? (wm/2g). Multiplying
by sin (wxri/p) sin (wsj/k), and summing over ¢ and j,
we obtain

wsj

poloacl gQENT @i
—4(AS) 2t = 2, 2, { — ) sin—sin—,
’ i=1 j=1 \ 0%/ ij P q

wp—=1;s=1,---,g—1),

from which a., is determined, and, by substitution in
(47), also (3¢/0%) ;.
We note that there are two Fourier transforms of
p—1
the type > ajsin (wim/p), and two of the type
i=1

r=1,--

g-1
S ayisin (wlj/q), involved in the solution of the Poisson

j=1
équation (45). The first type requires (p — 1)(g — 1)?
multiplications, and the second (p — 1)*(¢ — 1) mul-
tiplications; in all, (2p + 2¢ — 4)(p — 1)(¢ — 1) mul-
tiplications are required.

It is of interest to-inquire into the machine storage-
demands made by procedure A. We assume that all
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the initial data and all the results of intermediate
calculation are stored in a readily accessible form, in

. what is called the ‘‘memory’’ of the machine. At

time 7, the 2(p + 1)(¢ + 1) quantities ¢;; ' and ¢;
are stored. (¢ is assumed to be zero on those parts
of the boundary where influx occurs.) In stage 1,
the quantity (8£/9t)j is calculated point by point
and stored. At the end of this stage, a total of
20+ D@+ 1)+ (p — 1)(g — 1) are stored, ..,
¢y ', ¢ at all points and (9£/d¢); at interior points.
During stage 2, the (9£/6t)’s are systematically re-
placed by successive Fourier transforms, until the
(0¢/3t)’s are obtained. Therefore, the storage of at
most one additional row or column of numbers is
required. In stage 3, the ¢™! are replaced by the ¢7,
and the ¢7 by the ¢71! to prepare for the next time
step. Finally a small number of constants and the
quantities sin (wu/p), sin (z7v/p) [ = 1, -+, (p — 1)%;
=1, -+, (¢ — 1)¥] and sin? (wu/2p), sin® (wv/2q)
[u=1,---,p—1;9=1,-+-,g — 1] must also be
stored. But, from the congruence property of the sine,

sin [w(u 4+ p)/p] = — sin (z7u/p),

we see that, in reality, at most 2(p + ¢ — 2) sines of
all types must be stored. Hence, if  and ¢ are large,
we are not far from the truth if we say that storage
must be provided for three quantities per grid point.

In procedure B, the boundary conditions on ¢ for
the difference analogue to the Poisson equation (38),

Vie™ = &, (50)

are not homogeneous but that ¢ be a given function of
time on the boundary. Therefore, unless we set ¢ = 0
on the boundary — an obviously unreasonable pro-
cedure — the Fourier transform method is not con-
veniently applicable. As alternatives, however, there
are various iterative methods which are related to the
Southwell (1946) ‘‘relaxation’” method, in which an
approximate solution is determined by successive cor-
rections of an initial guess. It should be mentioned
that, whereas the Fourier transform yields an exact
solution to the finite difference Poisson equation, that
is, within the limits of round-off error, the iterative
methods in general do not. But, if extreme accuracy
is not required, this disadvantage is far outweighed
by other positive advantages. The chief of these is
that the iterative methods are also applicable to
the elliptic partial differential equations with variable
coefficients that occur in the three-dimensional models.
Another is that the methods are Jogically simpler and
require fewer instructions for the machine, thus taking
up less memory space. Also, if too great accuracy is
not required (or if the initial guess is good), few
iterations are needed, and the computation is faster.
However, the principal consideration that led to the
choice of an iterative method was that it could also
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be used for more general models, and consequently,
that its application to the barotropic model could be
expected to furnish valuable experience.

The “relaxation’”’ method of Southwell is not itself
well adapted to machine computation, as it involves
subjective estimations that are not easily codified as
instructions for the machine. The simplest of the
routine methods adaptable to the machine, because of
its logical simplicity, is probably Richardson’s (1910).
Dropping the time superscript on ¢, we write (50) as

Rij = ¢ip1; + Pi1j + Pijga + dij
— 44)5; - ASZ ‘E,’j = O, (51)

for the rectangular region ¢=0,1,---,9; 7=0,1,---,g,
on the boundary of which we assign fixed values of ¢.
The values of ¢, at.the vth stage of the iteration, are
denoted by ¢ The first guessed approximation then
corresponds to » = 0. In general, ®R¢;; will not be zero.
We shall call it the residual. The Richardson process
is simply to correct ¢’ by adding one-fourth the
residual, 7.e.,

o5 = ¢l + 1Rl (52)
This has the effect of reducing the residual at the
point ¢, j to zero, provided one leaves undisturbed all
the other ¢j;. Thus,

i1y + b+ Sy + Dy—1 — 4(d7 + 1R
= R¢y — Rey = 0. (53)

If, however, all the ¢’s are simultaneously corrected
by the formula (52), the resulting residuals ®¢}™ will
not be zero. However, it can be demonstrated rigor-
ously that the ¢’s will converge to the exact solution
with increasing ».

Southwell (1946) has shown that convergence is
hastened if (52) is applied pointwise rather than
simultaneously, and if at the same time the factor %
is replaced by a judiciously selected variable quantity
« greater than 1. This is called “‘overrelaxation.” If
the grid is scanned in the same direction along suc-
cessive rows, and if « is given a fixed value, the process
is called by Frankel (1950) the ‘‘extrapolated Lieb-
mann method.” This method is defined by the itera-
tion equations

o5t = ¢ + a®ey (54)

where the double index »,» 4 1 signifies that the
index » or v + 1 is to be used, according as the sub-
scripts are 4j, ++17, 4j+1 or ¢—1j, 4j—1. Frankel
(1950) has determined the optimum value of the con-
stant of overrelaxation «, and the corresponding con-
vergence rate, as follows. The errors Ej, = ¢;; — ¢y
satisfy the homogeneous equation corresponding to

(51). We write, symbolically,
EH = K(a) B, (55)

where X(a) is a linear operator depending on a. We
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expand Ej; in the eigenfunctions of the operator X,
subject to the boundary conditions on Ej;. (These are
that Ej; = 0 on the boundary.) Then it can be shown
that, if Eijps (r=1,---,p—1;5=1,:--,¢4—1)
are the eigenfunctions of EJ, so that

0
Eii = Z Qys Eij;rsy
78
and if K,, are the corresponding eigenvalues, then

E:i = Z ara(Krs) ini:ru

where the notation (K,,;)* means K,, raised to the »th
power. Frankel shows that « can be chosen so that
|K,s] < 1. Hence, the process converges. The opti-
mum value of « is that which minimizes the maximum
|K;s|. If cos B = i[cos (x/p) + cos (r/q)], the opti-
mum value of « is (1 + sin 8)~, and the maximum
absolute value of K,, is 4o — 1. If p and ¢ are large,
the maximum |K,,| is approximately given by

IKrslmax =1 - [272@_2 + g—2)]%'
In the Richardson method, the corresponding maxi-
mum |K,| is given by

'Krslmax ~1— %11'2(?_2 + QZ"Z)

for large p and ¢. It may be seen that the extrapolated
Liebmann process converges faster ultimately. How-
ever, in the first few iterations the size of the residuals
depends on the initial error distribution. Actually,
a value of « lying between Frankel’s and Richardson’s
was found to give the most rapid early convergence.

As many steps in the iteration process are per-
formed as are needed to reduce the absolute value
of each residual below a certain prescribed value.
The number of iterations will therefore depend on the
accuracy of the initial approximation. In procedure B,
an obvious initial approximation is the value of ¢;; at
the previous time step. A better one might be to ex-
trapolate linearly from the preceding two time steps.
However, the latter requires additional storage, namely
of the penultimate ¢.

Another iterative method has been proposed by
Fjdrtoft (1952), for solving equations of the type (51).
In its simplest form, it is the following. Denote the
quantity (it + ¢is1 + ¢im1j + $ij—1) by ey, so
that (51) may be written symbolically as

(1 — 3¢ = — 1 A8 & = Xij. (56)
Formal inversion of the operator 1 — 3C gives
¢ij=(1—3)""Xy= (1 -3+ -3+ - ) Xy (57)
This formal process is then justified. Defining
oy =[1—3+ - (=173 1]Xy  (58)

Fjgrtoft shows that ¢;; converges to ¢; as v tends
toward infinity.
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The process is, however, not (/iifferent from Richard-
son’s, for, as can be easily verified, the ¢; defined
by (58) satisfy (52), and complete equivalence be-
tween (52) and (57) is brought about by setting
¢y = 0.

Extensions of the above method by Fjgrtoft were
found to give more rapid convergence and to be well
adapted to hand computation. However, they involve
varying grid sizes and are therefore not suitable for
machine computation. ‘

It was shown in NI that the choice of the space and
time increments, As and A¢, is restricted by the compu-
tational stability criterion

As/AL > 2m| V| max, (59)

where |U]|max is the maximum particle speed in the
forecast region. This criterion must be satisfied if
small perturbations, which are inevitably distorted,
are not to amplify destructively. The ratio As/A¢ called
for does not, however, correspond to the optimum
ratio demanded by considerations of truncation error.
The increments As and At should be chosen so as to
give the same definition of the field of motion along
the time axis as along the space axis. That is to say,
the time truncation error and the space truncation
error should be about the same. Nothing is gained if
the increment of one independent variable is chosen
so small that the truncation error in this variable is
small, as long as the truncation error in the other
variable remains large. But this requires that the ratio
As/At should be equal to the local speed of propagation
of the flow pattern — not the local particle velocity.
We should take :

As/At ~ \2mc, (60)
where ¢ is a typical speed of displacement of the flow
patterns. At the 500-mb level, |v]n.x may be 50 m/sec
or more, whereas a typical ¢ is at most 20 m/sec.
Hence, the At called for by the criterion (59) is perhaps
two or three times too small. The computation will
therefore take two or three times as long as it would
if (59) did not have to be satisfied.

There appears to be a way out of the difficulty.
From the point of view of computational stability,
(36) behaves purely as an advective equation when
As is sufficiently small, 4.e., as though v = f~'& X V¢
were a fixed function of space. It does not matter that
n is itself a function of derivatives of ¢. Hence, in
using the method of integration B, the stability cri-
terion (59) applies only to (43) and (44), and not to
(42). This suggests that a new field of ¢ need not be
calculated from £ at the end of each time step. If, for
example, At is required by (59) to be one hour, we may
advect the vorticities for two or three one-hour steps,
while holding ¢ fixed as a function of time, and only
after the second or third step redetermine a new field
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of ¢, and therefore of velocity. Thus, the solution of
the Poisson equation (42) (which is ordinarily the most
lengthy operation) need be performed only as often as
is required by considerations of truncation error.

The above method cannot be employed with pro-
cedure A, because in this system it is ¢ and not %
(or &) that carries the history of the motion; ¢ must
here be determined for each time step.

We now describe the actual procedure used in ob-
taining a series of 24-hr barotropic forecasts.

Forecasts were desired for an overall area of 5400
by 5400 km, with an interior region of validity of
about 3300 by 3300 km lying almost entirely between
the 30th and 60th parallels. For an area of this size,
the Lambert conformal map projection with standard
parallels at 30 and 60 deg is particularly well-suited,
since it distorts distances between these latitudes by
less than 3.5 per cent. .

If ¢ is latitude, R, the radius of the earth, p the
polar distance on the map, and pg the distance from
pole to equator on the map, the following relations
obtain for the Lambert projection:

p* = pe’[(1 — sin ¢)/(1 + sin o) I, (61)
and

m? = Bp*(R.* cos® ¢)7, (62)

where 7 is a numerical constant (actually a function

of the standard latitudes) with the value 0.71556.
Defining # = (o/pg)?, we have _

sin @ = (1 — w™)(1 + ui/h), (63)

and _ ,

m? = Wp?R,2(1 — sin? )L, (64)

In practice, sin ¢ is sufficiently well approximated

between 30 and 60 deg by the linear fgnctibn of u,

sin ¢ = 1.056 — 1.233 %, 7 (65)

and m? is thereafter determined from (64). The error
in sin ¢ is less than 1.0 per cent, while the error in m?
does not exceed 2.0 per cent.

The mesh size As used in the Eniac computations
(NI), 628.5 km at 45°N, was definitely too large.
This became very evident when forecasts made both
with the stereographic and the Mercator projec-
tions were compared. The mesh size for the Mer-
cator projection corresponded nearly to the same dis-
tance on the earth at 40 deg as the stereographic
projection, but to only half the distance at 60 deg.
At the latter latitude, the forecasts differed consid-
erably; the intensity of the 12-hr 500-mb height-
change areas was, on the average, some 50 per cent
higher for the forecast made with the Mercator pro-
jection. Since the truncation error incurred in approxi-
mating a first derivative by a centered finite difference
is proportional to the square of the increment of the
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independent variable, the error would be reduced to
less than % its value if this distance were 300 km.

The magnitude of the error may be estimated
from the Taylor’s series expansions of f(x + As) and
flx — As). We find

1 [fle+A4s) — fle —4s)
7@ [ 245 -7 (’“)]
A8 ) p
~ 3 7 + O(As?).

Let f = cos (2mx/L). Then |f""'/f'| = 4x2L~2, and
As? f' £ As\?
12 f/ 3 (L ) )
Take L = 2000 km, corresponding to a motion of
relatively small scale. For this wavelength, the per-
centage error with As = 300 km is 7.5 per cent, whereas
with As = 628.5 km it is 40 per cent.

To use an increment smaller than 300 km would
seem to give undue prominence to the small-scale
motions, which are not governed by the geostrophic
approximation and which it is our desire to smooth.
Moreover, since the grid values are determined by
subjective interpolation, decreasing the size of the grid
interval would exaggerate errors of interpolation. The
value 300 km was therefore chosen.

The corresponding value of At was determined by
the stability condition (59). The maximum particle
speed at 500 mb, for the flows investigated, was esti-
mated to be 50 m/sec. This led to a maximum value
for At.of 1 hr and 11 min. The actual choice for At
was 1 hour.

We may now describe in greater detail the stages in
procedure B.

1. With 5{;‘1 and & stored for all grid points, except for
boundary points at which there is outflow, (51) is solved for ¢j,
by means of the iteration equation (54), with use of ¢§;"" as the
initial guess. The constant « is determined from (55).

2. (3¢/at)3 is found from

as T T T T T
<3t >.',' = (2 89)2[(nis1; — ni1i)(biier ~— Pijr) 66)

— (i — i) (@i — b)),
where
ny = muf5lEy + fy (67)
The quantities f;; and my; are evaluated from (65) and (64).
The relevant quantity here is 4 = (p/pr)?. This may be written
= pg *(As)2[(Gp — 0)* + (Gp» — 7], (68)
where the pole is given the integral coordinates 7, and j,.

At boundary points with inflow (inflow or outflow is deter-
mined by differencing the ¢;; onthe boundary adjoining the bound-
ary point in question), £ is set equal to its initial value £. At
boundary points with outflow, non-centered differences must be
used to evaluate (3%/9f)".

3. At interior points, E’,’j’l is obtained from

g = g7 4 e(r) At (3g/01). (69)

At 7 = 0, it is necessary to employ non-centered differences, that
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is, to set & 1= E?, and €(0) = 1. At all other times, e(r) is set
equal to 2. At outflow points, also, £}y must be used in place of E{Tf‘
with e(7) = 1.

By taking ¢(¢,7, 7) = ¢(2,7,0) on the boundary,
though this does not affect the motion at some dis-
tance from the boundary for short forecast periods,
we do not use a simple property of atmosphere motion,
namely that systems in middle latitudes generally
move from west to east. The first tool of the fore-
caster, that of extrapolation, may be incorporated into
the numerical forecast in the following elementary
way. Suppose that the average movement of the
systems is from west to east, with constant angular
velocity A about the polar axis. The value of A is
determined from past displacements.

Let us describe the motion in a coordinate system
moving relative to the earth, with the same angular
velocity \. The assumption ¢(z,7, 7) = ¢(4,7,0) is
obviously better in this coordinate system. The abso-
lute vorticity, in this system will be equal to the
absolute vorticity referred to a system fixed in the
earth, plus the small additional vorticity 2 sin o,
which is quite insignificant since A is very small com-
pared to @, the angular velocity of the earth. The
velocities will be different, but, as they are calculated
from the vorticities and the boundary ¢’s, it is only
necessary to consider the transformation of the latter
quantities, The velocity v’ in the moving system may
be written

v = v — AR, cos ¢ i,
where i is a unit vector pointing from west to east.
Hence we have only to set

¢’ = ¢ + AQR?2 sin? ¢, (70)

on the boundaries.

We come now to a consideration of problems of
storage and of computation time. The storage problem
is not critical for the barotropic model, but rapidly
becomes so for baroclinic models. Preliminary studies
with the barotropic model will therefore aid in de-
ciding the feasibility of baroclinic computations. The
computation time is again not a factor in the baro-
tropic integration problem, but is very much a factor
in the baroclinic case, particularly if the aim is to
develop practicable methods for service forecasting.
Also, on purely scientific grounds, a large number of
numerical forecasts will be needed to collect the induc-
tive evidence on which general laws of atmospheric
motion can be founded. The value of a numerical
forecast would be greatly reduced if an excessive time
were required for its preparation.

Clearly, the storage of data depends on the amount
of digital significance in the data themselves. Thus,
the 500-mb height used in the barotropic forecast
varies by perhaps 3500 ft over the forecast area, and
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is probably not more accurate than to within 50 ft.
Hence, the accuracy is one part in seventy, and two
decimal places should suffice for storing the height if
expressed as a deviation from a standard or a synop-
tically averaged value. Many modern computers,
including the I.A.S. machine, store and compute in
the binary system, in which the base is 2 instead of 10
as in the decimal system. Seven binary places, giving
an accuracy of one part in 27 = 128, are therefore
needed in this system. ‘

Actually, in the course of computation, more than
seven digits must be stored to allow for contamination
by round-off errors. Whenever a number is stored to
n places, it is rounded off .This produces a fractional
error that lies between 2—®*tD and -2+, If the
process during which the number is stored is repeated
m times, the probable error will be increased by the
factor m?}, provided the round-off errors are random.

Round-off errors in ¢ and £ also enter indirectly, as
for example in affecting the accuracy of (9£/41) in
(66), which in turn affects the accuracy of £ in (69),
and therefore again of ¢3! obtained from the Poisson
equation (51) for time 7 -+ 1. It should be pointed out
that, when an iterative process (e.g., the extrapolated
Liebmann) is used to solve (51), the error in ¢ is not
only caused by round-off per se, but is also a function
of the accuracy with which the final iterated solution
satisfies (51). The ¢’s were stored in the machine
as scaled quantities ¢, such that 1 > ¢ > 0, and
d¢/d$~gx 3500 ft. The iteration process was stopped
when |¢**1 — $*| < & for all 4 and j, or by (54), when
| Q™| < 8/a. [If 8 = 2-¥, the successive guesses
for ¢ must be stored to at least N -+ 2 places, if the
pure round-off error incurred in storing ¢’ is not to
interfere greatly with the convergence of (54).]

To calculate the resultant effect of these errors
ab initio is a difficult, if not impossible, task. Accord-
ingly, a short series of 12- and 24-hr numerical integra-
tions were performed, with varying digital significance
for the ¢’s and £'s. A basic forecast was first obtained
with § = 27 and £ stored to twenty places, and this
was then compared to forecasts from the same initial
data where & was gradually increased to 2-8 and the
storage of ¢ decreased to 14 binary places. It was
found that the error in ¢ at the end of 24 one-hour
time steps remained negligible in comparison with the
error of observation until § became greater than 2-9,
On the basis of these experiments, twelve places for ¢
(6 = 219 and 14 for each £ were decided upon. (It
later developed that fewer places, at least as few as
ten, can be used for £ Thus, an accuracy of approxi-
mately one part in a thousand was found sufficient for
both ¢ and £.)

In the I.A.S. machine, information is taken out of
the memory (or stored therein) in groups of forty
binary digits, each such group being called a “word.”
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Thus, one word sufficed for the three quantities ¢7, £
and £ that were stored for each grid point. In
the present case, the grid consisted of 19 X 19 = 361
points. Hence, 361 words sufficed for the storage of these
quantities. We may add that approximately 300 addi-
tional words were needed for storage of intermediate
results of computation, constants, and instructions to
the machine. The I.A.S. machine has an electronic
memory for 1024 words.

For a given forecast area, the storage depends also
on the size of the finite-difference intervals, and these
are determined by the allowable truncation error.
Unfortunately, space truncation errors are difficult to
assess as long as one is dealing with flows that are
determined initially only at a discrete set of observa-
tion points. The errors of interpolation cannot here be
separated from the truncation errors. This difficulty
could be partially overcome, if one had a mathe-
matically exact knowledge of the evolution of a flow
pattern closely resembling the motion in the atmos-
phere. The flow most nearly satisfying this condition
is the finite-amplitude wave model of Craig (1945),
Neamtan (1946), Thompson (1948), and Hoiland
(1950). Platzman’ has given an exact solution for the
corresponding difference equations. For the present,
however, we have assumed that the value of 300 km
for As is not far from optimum.

As for the time-truncation error, we have the evi-
dence from the Endac calculations (NI) that increasing
the time interval from one to two and then three hours
produced no appreciable change in a 24-hr forecast.
The computation proved stable for even the 3-hr
interval because the space increment was over twice
its present value and the particle speeds were lower
than 50 m/sec. In the present case, integrations were
performed for At = 1, 4 and 2 hr, to test the applica-
tion of the stability criterion. Instability manifests
itself by the exponential growth of small disturbances
in the field of geopotential or vorticity. Their rate of
amplification can be estimated from the theory pre-
sented in N1. One obtains the result that the maximum
amplification factor, after # time steps, is e*, where
0 = arc cosh [V2m |v|max Af/As]. In the example
tested, instability was observed for At = 4 hr and
At = 2 hr. In the case At = § hr, 8 was determined
from the rate of growth of small deviations from the
computation for At = 1 hr (which was stable). With
use of this value of 6, the corresponding value for the
case At = 2 hr and the number of time steps required
for the amplitude of a given perturbation to increase
by a certain amount were computed and were found
to agree with observation.

As previously observed, the computational stability
condition permits the advection of vorticity for several
(n) time steps in a velocity field that is held stationary

? Unpublished work.
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during this period. The velocity field is redetermined
by (51) only at the end of the period. Let us use the
notation ‘‘nJ/L” —n. Jacobian operations per ex-
trapolated Liebmann operation — to denote this pro-
cedure. Two experiments were made to test its
accuracy. These consisted in the preparation of two
12-hr forecasts, the first by means of the 2J/L
procedure and the second by means of the 3J/L
procedure. These forecasts were then compared with
the 1J/L 12-hr forecast from the same data. In
all these forecasts, At remained 1 hr. Although both
the 2J/L and 3J/L forecasts were stable, their devia-
tions from the 1.J/L forecast were too large to warrant
continued use of the process. Fig. 1 shows the differ-
ence in the 12-hr forecasts obtained by the 3J/L and
1J/L processes, together with the 12-hr changes pre-
dicted by the latter. The initial map from which the
forecasts were made is shown in fig. 5. The error is
due to a too-rapid northward displacement of the
cyclonic vorticities associated with the deep cyclone
in fig. 4. It is of just the same kind as the error pro-
duced in the position of a fluid particle in a non-
stationary flow, when the mistake is made of identifying
a streamline with the path. The velocity field is here
attached to the vorticity field and moves with it.
(Fig. 2 shows the corresponding phenomenon for a
baroclinic forecast.)

The following scheme, involving the storage of
four quantities per grid point, has been found to
eliminate the error and to decrease the computation
time. At time 7, suppose we have the quantities ¢77,

F1G. 1. Barotropic forecast 500-mb 12-hr height change in
hundreds of feet. Continuous lines show forecast change when
velocity field was redetermined at each time step (1J/L). Dashed
lines show deviation from above change when velocity field was
redetermined after every third time step (3J/L). Initial data in
both cases were for 1500 GCT 24 November 1950.

J. G. CHARNEY AND N. A. PHILLIPS

Nov. 25 0
| 0300 GCT 1l -
[ 700 mb N s

i 20 00 N N M ' v s v i ‘ 207 '

Fi1G. 2. Baroclinic forecast 700-mb 12-hr height change in
hundreds of feet. Continuous lines show forecast change when
velocity field was redetermined at each time step (1J/L). Dashed
lines show deviation from above change when velocity field was
redetermined after every third time step (3J/L). Initial data
in both cases were for 0300 GCT 25 November 1950.

" ¢7, £ and ¢ stored. In the first step, £ is calcu-

lated from (66) and (69); the quantities &' are
replaced by £ in the memory, and £7 is replaced
by ¢t The value of ¢ ! is then determined not
by solution of the Poisson equation (51), but by
linear extrapolation from ¢™* and ¢7. With the
aid of this new value, &2 is calculated, and a ¢7+2
is determined again by extrapolation from ¢™* and
¢". The whole process is carried out » times, until

130, 4129 4
4+ +

+ " N + n
55—+ t t st + =3¢ + + 5 =t

Fi16. 3. Location of finite-difference lattice used in barotropic
and 23-dimensional forecasts. Large square outlines 19 X 19 grid
used for computations; smaller square outlines region over which
verification was made.
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Fi1G. 4. 12-hr barotropic forecast data for 500-mb, November 1950. Left-hand charts contain initial 500-mb maps, with height
contours (continuous lines) at 200-ft intervals for 0300 GCT on 23rd (a, top), 1500 GCT on 23rd (b, center), and 0300 GCT on 24th
(c, bottom). Dashed lines on these three charts show error (forecast minus observed in hundreds of feet) in 12-hr forecast made from
each initial map. Right-hand charts contain observed (continuous lines) and forecast (dashed lines) height changes (in hundreds of
fee t) for 12-hr period following time of corresponding chart on left.
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F1G. 5. 12-hr barotropic forecast data for 500 mb: (a, top), 1500 GCT 24 November 1950; (b, center), 0300 GCT 25 November 1950;
(c, bottom), 1500 GCT 25 November 1950. (Refer to fig. 4 for further explanation.)
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the quantities ¢"~", ¢7, £7#* ! and £ are held in the
memory. At this stage, ¢™" is replaced by ¢7, and
¢ is determined from &+ by the solution of the
Poisson equation. The induction is then complete.
Initially it is necessary to advance in single time steps,
until 7 steps have been taken. Only then do we have
two quantities for the extrapolation, namely ¢° and ¢*,
and are ready to begin the induction.

The above considerations suggest an improvement
of procedure B, in which a new ¢ is computed at every
time step from each new £. Assuming that it is possible
to store four quantities per grid point, we suppose that
¢™2 is stored in addition to ¢!, £ ! and {7 at the
stage just preceding the calculation of ¢* from £
Instead of taking ¢™! as the initial guess in the itera-
tive process, we extrapolate linearly from ¢™? and
take instead 2¢™! — ¢7 2. The initial error is thereby
considerably reduced, and fewer iterations are re-
quired to reduce the residual below a prescribed value.

It is of interest to compare the computation times
for different methods of integrating the barotropic
equations. With procedure B, a time interval of one
hour, and a rectangular grid of 19 X 19 = 361 points,
the I.A.S. computer produced a 24-hr forecast in 48
min, at full speed. (Actually the machine operated at
half-speed most of the time, and therefore required
96 min.) In each step, the machine performed 64,000
multiplications, 4,200 divisions, 314,000 additions and
subtractions, and executed 1,467,000 additional orders.
Of the 64,000 multiplications, 52,000 were used in
solving the Poisson equation and 12,000 in computing
the Jacobian. With the ¢'s stored as numbers smaller
than 1, approximately 13 iterations of the extrapolated
Liebmann process were required to reduce the quan-
tity |¢** — ¢7| below 2-%. Altogether, six-fold more
time was spent in the Poisson part of the calculation
than in the Jacobian part. However, it has been found
that use of the modified procedure B presented in the
previous paragraph, combined with a more thorough
rationalization of the remainder of the code, leads to
a computation time, at full speed, of about 24 min for
a 24-hr forecast. With this improvement, the Poisson
part of the computation consumes no more time than
the Jacobian part. (Note added in proof: The computa-
tion time has recently been reduced to 6 min.) '

It has been pointed out that the Fourier trans-
form method (procedure A) uses approximately
2(p 4+ g — 2)(p — 1)(g — 1) multiplications in the so-
lution of the Poisson equation. With p = ¢ = 18, this
gives about 20,000 multiplications, as compared with
approximately 52,000 in procedure B. Nevertheless,
with use of procedure A, it is estimated that a com-
puting time of at least one hour at full speed on the
machine is required for a 24-hr forecast in one-hour
steps. This is because of the large number of non-
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arithmetical or ‘'logical” orders the machine is re-
quired to execute,

4. Integration of the 2}-dimensional equations

As in the treatment of the barotropic model, we
introduce a Lambert conformal mapping and a Carte-
sian system of coordinates x, ¥ in the conformal plane.

- With the notation ¢; = ¢, ¢1=¢', 2 =19, m =17,

(31) becomes
' dq/ot

1l

m’f= J(q, ),

m’f~ J(q', ¢"),

(71)
(72)

and
aq' /ot

il

where

g =[m* "V + fll(x+ DD — «(¢’ — ¢) I, (73)

and :
g = [m*f1 V%" + fllk(¢' — ¢) — (x — 1)D]. (74)

From the manner in which (29) was derived, it is
seen that ¢’ is the geopotential of the 250-mb surface
and ¢ is the geopotential of the 750-mb surface. Since
these are not standard surfaces, it is inconvenient to-
determine their heights from radiosonde reports. How-
ever, because of the crude manner in which the vertical
scale of motion is being treated, there is no difficulty
in deriving an equivalent set of equations which apply
at the standard levels, 300 and 700 mb. This is done
by using approximations that are already implicit in
the derivation of (29). Thus, if we write (13) for the
300- and 700-mb levels, and in each case evaluate the
vertical derivative by using centered differences and a
vertical increment ép = 600 mb, we find, in view of
conditions (19) and (20),

1 ( Dn) ws 1 Dn) w4

N3 Dt 3 5P ’ nr Dt 7 5?
(The subscripts denote the level in hundreds of milli-
bars.) Assuming that w has a parabolic distribution be-
tween p = 0 and p = 1000 mb, we get ws= ws= 0.96 w;.

But, as shown in the derivation of (29), ws may be
written

1 /D
on=2(5;) s =90
1 /7D
- (), m@ e 0o

Substitution in (75) then gives exactly (29), with ¢,
interpreted as ¢3; and ¢; as ¢7. The quantity « is now
given by —0.96 (8p 9 In 8/9p)~1 =~ 0.64 05(0;— 67)1~ 8.
Thus, (71) to (74) apply to the 300- and 700-mb levels,
if only ¢’ is defined as the 300-mb geopotential and
¢ as the 700-mb geopotential.

The lateral boundary conditions may be found by
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the same heuristic reasoning as was used in NI for the
barotropic model. Suppose ¢’ and ¢ are known func-
tions of time on the boundary C of the simple closed
region T. If ¢" and ¢ were known at all times in the
interior of T, we could solve the simultaneous system
(73) and (74), which can be shown to have a unique
solution, and so could determine ¢’ and ¢ as functions
of time in the interior. But the physical equations
(71) and (72) state that ¢’ and ¢ are advected with
the fluid; if fluid is entering I at one level, say 700 mb,
there is no way of knowing the associated value of ¢.
Hence, ¢ must be specified on C at those points where
fluid is entering, 7.e., at those points where the tan-
gential derivative of ¢ is positive in the direction
which keeps the interior on the left. The same indeter-
minacy is not encountered where fluid is leaving. At
such points, it is unnecessary to specify ¢’ or g. Indeed,
it is impossible to do so, for when fluid is leaving it
carries its own ¢’ or ¢ with it.

The integration is carried out quite by analogy with
the procedure B used for the integration of the baro-
tropic vorticity equation. At time 7, we suppose that
the quantities ¢'"1, ¢'7, ¢"! and ¢" are stored. The
difference analogues of (73) and (74),

2
Jiii; S
Vi =— [(k+ DD — k¢l — ¢:)] — —, (1)
mii mii
and
fugt fi
2 7Y ’ 17
Vi == [k(¢y — #:) — (x = )D] ===, (18)
me m

if i

are then solved for ¢’ and ¢, subject to the conditions
that ¢’ and ¢ are given functions of time on the bound-
ary. One may here assume that d¢’/ot = d¢/dt = 0
on the boundary, or else deal with the motion in a
system rotating with constant angular velocity. In
the latter case, it can be shown that there would be
no appreciable change in ¢’ or ¢, so that the trans-
formation (70) for the boundary ¢’ or ¢ is all that
would be required.

After ¢'7 and ¢” have been determined, (dq’/0#)*
and (8q/9t)™ are evaluated from (71) and (72); and

g7 ' and gjj! are calculated from the formulae
S .
g7 = gqj -+ 2At(dq"/9t) g (79)
and
g™ = gy + 2 AL (3g/a0);; (80)

Again, in the evaluation of the finite-difference Jaco-
bian at points adjacent to the boundary, we invoke
the boundary conditions in ¢’ and q.

The principal problem is the solution of (77) and
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(78). Subtraction gives

2 kfi;
Viih — -;i (g5 + gihis
m

i

fuD

mt
ij

[(x + g + (x — 1gii],

(81)

where hi; = ¢i; — ¢4;. This is a difference analogue of
a non-homogeneous self-adjoint linear partial differ-
ential equation of elliptic type, in the single variable
k. If it can be solved for hi; = ¢y — ¢, substitution
of ¢y — ¢4 into (77) yields the difference analogue of
a Poisson equation in the single variable ¢;;. Solving
the latter for ¢, we obtain ¢; by adding ¢ to
by — i ‘

It is proved in books on differential equations that
(81), in continuous form, has a solution when the
corresponding homogeneous equation does not. It can
be shown that this will always be the case when
¢’ + g is positive, or negative but small. With the
exception of certain small regions in the atmosphere,
where the vorticity is strongly anticyclonic, both ¢’
and ¢ are positive, and even in these regions the 5's
are so little different from zero that ¢’ 4 ¢ is suffi-
ciently small. Hence, it is always possible to solve the
system, (77) and (78). We remark that this is not so
in the geneéral baroclinic equation, from which (73) .
and (74) were derived by approximation. If the poten-
tial vorticity becomes negative, it can be shown that
the three-dimensional potential vorticity equation in
the height tendency becomes hyperbolic. In this case
it is probable that no solution exists in the strict
mathematical sense. However, in regions of negative
potential vorticity it is likely that a kind of inertial
instability sets in to reduce the potential vorticity to
zero, just as static instability reduces the vertical
potential-temperature gradient to zero. We may there-
fore be justified either in smoothing the negative
potential vorticities to zero, or in assuming that the
finite-difference equations — which do have a solution
despite the existence of regions of negative ¢ — govern

the large-scale motions with sufficient accuracy.
With the definitions

yii = kfumi(qy + ¢i) (3 A9, (82)
and
pii = = fumg DLk + 1)gi; + (k — 1)gy] As?,  (83)
(81) becomes
Lhi; = hiy; + hicy + b + hij
— 4 + yidhi; — pij = 0. (84)

We may solve this equation by an extrapolated Lieb-
mann process, exactly as we did the Poisson equation
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(51). By analogy with (54), we define the iteration
process

R = B+ alhy T (85)

It is difficult to obtain the optimum « and exact con-
vergence criteria, except when v,; is constant. In this
case, setting ¢ = 1 4 ¥.; we can show by an adapta-
tion of Frankel’s (1950) method that the optimum « is
[2a(1+sin6) ]!, where cos6 = (2a)~'(cos 7/ p~+cos 7/q),
and that the maximum | K,,| is 4aa — 1. It was found
experimentally that the « corresponding to the mean
value of v;, 4, gives as rapid convergence for the
solution of (84) with variable v,; as with constant v,;.
If @ is appreciably greater than one, the convergence
rate of the extrapolated Liebmann method is consid-
erably better for (84) than for (54).

The computational stability criteria for the system
(77) to (80) may be derived in a manner analogous to
that used in NI for the barotropic vorticity equation.
If terms that do not lead to an exponential amplifica-
tion when As — 0 are ignored, the stability criteria
become ‘

As/At > N2 V'], As/At > V2 v, (86)
where |v'| is the maximum wind speed at 300 mb,
and |v| is the maximum at 700 mb. Thus, from the
standpoint of computational stability, the difference
analogues of (71) and (72) behave precisely as advec-
tion equations in which the velocity field is independ-
ent of the quantity being advected.

Because of the high particle velocities at 300 mb,
it was necessary to take At = % hr for As = 300 km;
but to shorten the computation time, the accelerating
scheme outlined earlier for the barotropic integration
was used ; the potential vorticities ¢’ and ¢ were ad-
vected in their respective velocity fields for three
successive half-hour steps, and only then were the
new ¢’ and ¢ computed by solving the difference
analogues of (79) and (80) (the 3J/L process). Here,
because of the small value of At, it was thought that
the truncation errors introduced by using non-contem-
poraneous velocity fields would be small. As a check,
a single 12-hr forecast was made in which ¢’ and ¢
were computed at every half-hour step {(the 1J/L
process). The differences between the 700-mb heights
computed by the two methods are shown in fig. 2,
together with the 12-hr height change computed by
the 1J/L method. It will be seen that the differences
are large. Unfortunately, this comparison was made
only after all the forecasts had been completed and
the diagrams drawn. The reader must therefore be
asked to bear in mind that an appreciable trunca-
tion error is present in the 23-dimensional forecast
diagrams (figs. 6 and 7). Just as in the barotropic
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forecast referred to previously, the error results from
a too-great northward advection of the large cyclonic
vorticities associated with a deep cyclone. Since it is
observed from figs. 6 and 7 that the forecast errors
also had this property, it appears that these errors
would have been reduced had the 1J/L process been
used throughout. Those forecasts in which the error
was expected to be large were later recomputed with
use of the 1J/L process (see next section). .

A more accurate time-saving scheme would be to
employ a procedure analogous to that recommended
for the barotropic integration, namely to store the
penultimate ¢’ and ¢ and extrapolate to obtain cen-
tered values for the Jacobian computation. With this
scheme, it would not be necessary to use the same Af at
each level. ¢’ and ¢ could be advected separately, in
time steps determined by the first and second of the
criteria (86), respectively. It would, of course, be
necessary to choose the time steps in the ratio of
small whole numbers. Thus, one could advect ¢ in one
(or two) 13-hr steps and ¢’ in three (or six) 3-hr steps.

On the basis of the experience gained from the study
of round-off error in the barotropic integrations, it
was decided to allot twelve binary digits for the storage
of ¢7, and 14 binary digits each for the storage of ¢"
and ¢! at each level. It was then possible to store
all the data pertaining to one grid point as two forty-
digit “words.”

With use of the same horizontal grid dimensions as
in the barotropic model, the length of time required
to compute a 24-hr forecast was a little more than
twice that for the barotropic model. Each 13-hr fore-
cast involved the calculation of three fields of Jacobians
for each level, and the solution by iteration of (81)
and (77). With the machine operating at full speed,
1} min sufficed for the six Jacobian calculations, 2%
min for the solution of (84), and 3% min for the solution
of (77). Thus, a total time of 7 min per 13-hr time
step, or 1 hr and 52 min per 24-hr forecast, was taken.
This time can be considerably reduced by the use of
procedures similar to those by which the barotropic
forecast time was reduced from 48 to 6 min.

We remark, finally, that the number of multiplica-
tions performed and orders executed for each of the
two Jacobian and Liebmann calculations was roughly
the same as for the corresponding barotropic operations.

It is not necessary to solve the system (77) and (78)
by reduction to an equation in a single dependent
variable. The equations may be solved implicitly, by
an extension of the extrapolated Liebmann method.
We write them in the form

Shijp = Gipijk + Pictix + Dijur T bire — b

87
+ Ay — Pi2) + i = 0, (87)
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where ¢ = ¢ij die = ¢y (B = 1,2), and

var = (= )% (As/2)*mi" fiiguin, (88)
pise = (fAs/m) — (f As*/m®) g1 + (—1)%]D.
The iteration processes

¢"l’j-l|:_1 = ¢ + a5¢;};+ly (89)

in which Sd)}',’;’;'*'l is defined in the same way as ®ej !
in (54), can be shown to converge; and, in the case
where the v's and u’s are constant, to converge at
essentially the same rate as the extrapolated Liebmann
process (54) for the Poisson equation. This follows
from the result that the eigenvalues for the operator
¢ in the symbolic equation

Ertl = 9(“) E, (90)

relating the errors Ej; = ¢}, — ¢ and €™ = ¢4 — ¢y,
consist of those for (54) and (85).8

Since integrations of the [2 + (z — 1)/n]-dimen-
sional model will eventually be made, it is appropriate
to consider a possible integration program. As already
pointed out, little appears to be lost if the system
[(26), (27), (28)] is replaced by the simpler linearized
system (34). This system may be written

aq/ﬂ/at = J[f—l(m29k + fz)r ¢Ic]r (91)
*k=1,2,.---,7),
where
qe= V2 — fr [y (dpr— pry1) — meoa(Pr—1—¢x) 1. (92)

A direct analogue of the method used for the 2}-
dimensional equations suggests itself here: Store the
quantities g and g; ' ; solve (92) for ¢; ; calculate g/ ot
from (91); and finally calculate gj** from g;t' = ¢f~*
+ 2 At(3gi/98)".

The extrapolated Liebmann process may be applied
to solving (92) for all the ¢)'s simultaneously, or to
solving a transformed system each of whose equations
contain but one dependent variable.

In the first case, we define

Mbije = [ Piy1itPi1j+ Girr+ dijm1— 4 — (A5)°ii I
—[f(As) 22 il mupise — disns1)

—mi-1(bije1—diin) ],  (93)

and calculate ¢ from
Ot = bin + oMot (94)
It can be shown that the process converges. In the
second case, we proceed as follows. We first assume that
the factor f(As)?m—2may be absorbed in the =’s, and
the resultant quantities, m,’, treated as constant. The

8 The writers are indebted to their associate, A. Nussbaum,
for this result.
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justification for this is the same as for replacing the
absolute vorticity and the static stability by mean
values, when they occur as factors. Equation (92) may
then be written

0,(k=1,2---,m), (95)

Vi + ZlAak ¢ + Cp =

where the matrix 4 = (4,) is constant and symmet-
ric. Let \ (r = 1,2, ---,n) denote its eigenvalues,
defined as the % roots of the determinantal equation
|A — A| = 0, where I is the unit matrix. Let ¢,
(s = 1,2, -+ -, n) denote the components of the eigen-
vectors satisfying the equations

Z Ask ‘pkr — A 3r = 0;

k=1

(r,s =1,--+,m). (96)

Multiplying (95) by 4", and summing over k, we
obtain '
V2hr + AT hr + lr = Oy (97)

where

he =2 s L= 2 Cot”

k=1 k=1

(98)

If the ='s are all positive, as is the case here, it can be
shown that the A’s are all negative, so that (97) is
always soluble. The equations are solved singly, and
the ¢'s are obtained from

-, n), (99)

¢s=zhr¢r81 (S=1,"
r=1

a relationship derived from the first of (98) by multi-
plication by ¢;* and use of the orthogonality rela-
tionship

(100)

The equations (97) are of the same type as (81), and
can be solved in the same manner by the extrapolated
Liebmann method.

5. Discussion of results

The period selected for the forecasts was 0300 GCT
23 November to 1500 GCT 26 November 1950, and
the forecast region the eastern part of the United
States and southern Canada, an area with a relatively
dense network of observing stations. It was decided
that only for such an area was there a reasonable
prospect of separating analysis errors from truncation
and model errors. The uniform superiority of the Eniac
forecasts for land areas, with good observational net-
works, over the forecasts for oceanic areas, with poor
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networks (NI), had already indicated the advisability
of confining the experimental predictions to land and
coastal areas. The eastern half of North America as a
whole was also recommended because of its freedom
from high mountain ranges, a complicating factor.
The sequence of synoptic events that occurred during
the period of the forecasts had already attracted wide
attention as an unusually rapid and strong baroclinic
development. It was felt that this sequence would
provide an excellent laboratory in which to ‘test the
hierarchy of models.

The grid of points chosen for the forecast is shown
in fig. 3. The region of validity for a 24-hr forecast is
obtained by excluding a border strip, approximately
three grid intervals in width.

Barotropic and baroclinic forecasts of 12 and 24 hr
were prepared from each of the six initial maps: 0300
and 1500 GCT, 23, 24 and 25 November 1950. Each
24-hr forecast from an initial map overlapped the first
half of the succeeding 24-hr forécast, with the excep-
tion, of course, of the last. Beginning at 0300 GCT
23 November, a relatively weak surface cyclone, cen-
tered near the western border of Lake Superior and
containing an occluded front, drifted very slowly east-
ward and filled; 48 hr later it lay near the eastern
border of Lake Superior. At that time the surface
cyclone was quite weak, but the associated cold front,
extending from the base of the occlusion in Ohio
southwestward into the Gulf of Mexico and northward
 again through New Mexico, separated air masses of
great density contrast. The associated upper cyclone
at 500 mb was centered initially just west of Lake
Winnipeg in Manitoba, and moved more rapidly but
at a decelerating pace; by 1500 GCT November 24,
it lay just over Chicago. At that time, a surface cy-
clone formed on the cold front, just south of the base
of the occluded front, and deepened rapidly at the rate
of about 1 mb/hr, so rapidly indeed that the winds
after 24 hr had reached hurricane force along the
Atlantic seaboard. An upper cyclone associated with
the surface disturbance seemed to develop simulta-
neously, or just afterwards, and to amalgamate with
the original cyclone aloft. The kinematic effect was a
rapid acceleration of the original cyclone to the south-
east. This process continued until 1500 GCT Novem-
ber 25, when the new surface cyclone reached its
greatest development. Thereafter, the surface low-
pressure center moved northwestwards, and the upper
cyclone moved rapidly northwards for the first 12 hr
‘and then stagnated.

The results of the six 12-hr barotropic forecasts for
the 500-mb level are shown in figs. 4 and 5. The
right-hand chart shows the observed and forecast
height-changes, and the left-hand chart the initial map
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Fic. 8. Observed (solid arrows) and forecast (double-line
arrows) trajectories of 500-mb height minimum. Positions shown
at 12-hr intervals, beginning with 0300 GCT 23 November 1950.

and the error map. The 12- and 24-hr computed dis-
placements of the cyclone center are shown in fig. 8,
in comparison with the observed displacements. ,

The 21-dimensional 12- and 24-hr forecasts for 700
and 300 mb were prepared for the same periods as the:
barotropic forecasts. The results of the 700-mb fore-
casts are displayed in figs. 6 and 7. The observed and
predicted changes are again shown on the right-hand
charts, and the initial 700-mb charts, together with
the forecast errors, on the left. The forecast 12- and

1

Nov. 23-26

x| 700 mb = P
T oo T T et
F1c. 9. Observed (solid arrows) and forecast (double-line

arrows) trajectories of 700-mb height minimum. Positions shown
at 12-hr intervals, beginning with 0300 GCT 23 November 1950.
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24-hr displacements are shown in fig. 9, in comparison

. with the observed displacements.

The 24-hr forecast changes could not be shown for
lack of space. However, correlation coefficients of the
observed and computed changes, as well as root-mean-
square deviations and root-mean-square observed
changes, for both the barotropic 500-mb and the baro-
clinic 700-mb 12- and 24-hr forecasts, are given in
table 1. Let x; denote the deviation of an observed
height change from its mean value over the region of
validity of the forecast, and y; the corresponding devi-
ation of the forecast change. The correlation coeffi-
cient may then be written

r=2 %y [ x® 2 vl
and the root-mean-square deviation of y; from x;,
D =[(169) T (x; — yo)*]

The index 7 ranges over the 169 (13 X 13) grid points
in the region of forecast validity (fig. 3). The quantity
D is chosen as being more representative than the
root-mean-square deviation of the predicted from the
observed changes, because it is invariant with respect
to an additive height-change field. The addition of a
constant height-change alters neither dynamical quan-
tities nor elements of weather. For comparison with
D, we also enter X and Y, the root-mean-square values
of x; and y,, respectively:
X = (X x#/169)}, ¥V = (¥ »:2/169)%

In the barotropic integrations, new vorticities and
heights were computed every hour (1J/L). In the
baroclinic integration, new potential vorticities were
computed every % hr, but new heights only every 13 hr
(37/L). In systems with strong winds and concen-
trated vorticities, the truncation error introduced in
the latter integrations because of the non-centered ¢
is large, as shown in fig. 2. For the flow patterns
investigated here, it can be shown, as remarked in an
earlier section, that its effect is to produce too great

TaBLE 1. Correlation coefficients (7) and related statistica
forecasts. X, ¥ and
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a northward displacement of the cyclone during the
period in which the winds were strongest and the
vorticities most highly concentrated. [Compare figs. 2
and 7(b).] Accordingly the forecasts were recomputed
by the 1J/L method for this period. On the average,
the 12-hr correlation coefficients were increased by
7.5 per cent and the 24-hr ones by 4.5 per cent. Not
all forecasts were so recomputed ; quantities pertaining
to those that were not are enclosed by parentheses in
table 1.

It is evident that there is a consistent superiority
of the 2i-dimensional over the 2-dimensional fore-
casts, both for 12 and 24 hr. The superiority at 24
hr is the more marked. Here the baroclinic correla-
tion coefficients average 11.5 per cent higher than
the barotropic correlation coefficients, whereas at 12
hr they average only 5.8 per cent higher. Apparently
the barotropic forecasts deteriorate more rapidly.

But perhaps the most noteworthy feature of the
forecasts is their disagreement, rather than their agree-
ment, with observation. Inspection of the forecast
errors (figs. 4-7) reveals that the errors for the first
60 hr were due primarily to a failure to predict a fall
in height south or southeast of the upper cyclone.
A glance at the 700- and 500-mb charts for 1500 GCT
24 November [figs. 7(a) and 5(a)] shows almost com-
plete agreement in phase, and the same bilateral
symmetry about a NNE-SSW axis. Under such
circumstances, neither the barotropic nor the 2i-
dimensional model can predict the observed south-
ward displacement; the pressure rises and falls will be
more or less symmetrically placed with respect to the
axis of symmetry. Neither the advection of absolute
vorticity by the wind, nor the advection of the nearly
parallel field of thermal vorticity by the thermal wind,
can produce the asymmetry needed. This is made most
clear in fig. 10, which shows the potential vorticity
field. The symmetrical arrangement of the potential
vorticity field of the cyclone with respect to the wind
field precludes the large southward displacement.

In an attempt to see if possibly the horizontal
variation of static stability, which was ignored in the

. 1 parameters X, ¥ and D, for barotropic and 24-dimensional
in tens of feet. Figures in parentheses were obtained by 3J/L method.

12 hour 24 hour
500 mb 700 mb 500 mb 700 mb

Initial map ¥ X Y D r X Y D 1 X v D r X v D
03 23 Nov 87 22 18 11 @89 15 (15 8 39 28 20 (90) 26 (27) (12)
15 23 Nov 83 24 23 14 86) 16 (14) (8) 77 42 34 27 87) 30 (24) (14)
03 24 Nov 82 25 22 14 89 19 18 9 74 38 29 26 80 27 30 19
15 24 Nov 73 28 27 20 7 17 17 12 37 41 36 66 64 33 26 26
03 25 Nov 61 26 31 25 70 21 18 14 61 35. 36 32 56 28 27 26
15 25 Nov 78 21 28 17 (87) 16 (23) (12) 60 29 39 32 87) 21 (28) (15)
Mean 77.3 24.3 24.8 16.8 83 17.3 17.5 10.3 65.8 37.3 33.7 33.8 77.3 27.5 27.0 18.7
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- F16. 10. 300-mb chart for 1500 GCT 24 November 1950, with
height contours (continuous lines) at 200-ft intervals. Corre-
sponding potential vorticity field is shown in dashed lines (in
units of 1078 sec™ m™).

derivation of (26) and later of (29), could account for
the discrepancy, the static stability measure « was
determined as a function of x and y and used in place
of the constant mean value 8 [see text following
(76)]. The observed « chart is shown in fig. 11. The
instantaneous change in the 700-mb height at 1500
GCT 24 November was evaluated from the system

el Jnak
Vi— + J(¢s, _
Py + J(¢2, ) + i or — o0
(1 — ¢2) m? .
— 4 — J(¢, =0, (101
X [ o+ ¢1>] (101)
o Q - A BRECAR

P

Sl

120]

R Lo

J ~—

OSSR (( {
QDJA\. 2, ;‘ 410 9:9 : :.,3:/:8/“10

F16. 11. Observed distribution of « = 0.64 65(6; — 6;)™!
at 1500 GCT 24 November 1950.
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F16. 12. Difference (dashed lines) between initial 700-mb height
tendencies at 1500 GCT 24 November 1950, obtained with (a)
variable stability factor x(x, y) shown in fig. 11 and (b) constant
stability factor x = 8 [(a) — (b)]. Units are hundreds of feet
per 12 hr. Solid lines are tendencies computed with % (also
hundreds of feet per 12 hr).

d¢1 Jmx
Vi— + J(¢1, -
ot + T m) m* (1 — ¢2)
(1 — 2)

m2
+ 7 J(¢2, ¢1)] =0, (102)

, % [
derived from (21). This change was compared with
the corresponding change for constant mean «. Fig. 12
shows the deviations of the former from the latter,
compared with the latter. It will be seen, by compari-
son with the error chart in fig. 7(a), that the effect is
small and does not account for the observed dis-
crepancy.

It was postulated in the derivation of the system
(34) that » could be replaced by a suitable constant 7.
This assumption has been tested. The 2%-dimensional
equations derived from this approximation,

ot

(2)[r-20-s]-n oo
and '
(%)[” + Bn (¢ — @)] =0,  (104)

were integrated for 12 hr in 3-hr time steps by the
3J/L process. The mean value of 4 was taken equal to
f at 45°N. The deviation of these forecast 700-mb
heights from those computed by means of (31) for the
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F1c. 13. Difference (dashed lines) in forecast 12-hr 700-mb
height change (in hundreds of feet) obtained with (103), (104)
and (31). Initial data taken at 1500 GCT 23 November 1950.
12-hr changes obtained from (31) are shown by continuous lines
(in hundreds of feet).

same time steps are represented in fig. 13, together
with the 12-hr changes computed from the latter
equations. It is seen that the deviations are small.
Thus, it appears that the effects from the variations
of the coefficients in the forecast equation are incapable
of accounting for the observed forecast discrepancies.
Moreover, because of the symmetry of the motion
above the 700-mb level in the present instance, the
wind — thermal wind interactions are also not respon-
sible. The causes should therefore be sought in the
low-level thermal asymmetries. Attempts might there-
fore be made to reformulate the 21-dimensional model,
so as to take into account the low-level motions. This
has actually been done, but with negative results.
It seems likely, to the writers, that the difficulty is
inherent in the basic crudity of a model in which the
vertical structure of the atmospheric motion is given
in terms of merely two parameters. This lack of defi-
nition is emphasized by the following considerations.
Equation (16) relates the individual change of absolute
vorticity at a given level to the individual expansion
and contraction of isentropic unit layers. The change
of the order of differentiation in passing to (18)
may be interpreted as a statement that the individual
expansion and contraction of an infinitesimal isen-
tropic unit layer is proportional to the individual fluc-
tuation of the potential-temperature difference between
two infinitesimally separated isobaric surfaces. We
now apply (18) to the 700-mb surface, and replace
the infinitesimally separated isobaric surfaces by the
500- and 1000-mb surfaces, respectively. With the aid
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of the boundary condition (20), we arrive at the con-
clusion that the individual expansion and contraction
of the isentropic surfaces at 700 mb can be replaced by
the individual rate of change of potential temperature
at 500 mb. This follows from the fact that the indi-
vidual change of ¢ at the ground is effectively zero.
When violent changes occur at low levels, as in the
present case, the strong space- and time-fluctuations
of static stability associated with the motion of the cold
air-masses are obviously not reflected adequately in
the potential-temperature fluctuations at 500 mb.
More levels must be chosen to take into account the
variations of static stability in a significant way. Three
levels would permit horizontal individual changes of
static stability. Four levels would also permit vertical
variation, but this seems less important dynamically.,
Four levels is, however, the minimum number neces-
sary to free the model of dynamical constraints not
inherent in the geostrophic hypothesis.

The vertical velocity at 500 mb (w) can be obtained
from the 23-dimensional forecast data in the following
manner. Combining (1), (8) and the approximation

w = dp/dt = w dp/dz,
we obtain the relation

w = — (100/64)(x/g)(8/0t + v-V)h, (105)
where & = ¢3 — ¢7, and v is either the 700-mb or
300-mb wind. Given & and ¢;, say, at times = and
T — n, w is given by

e T—n

K
wr—ir = — (100/64)-

(100/ )g[ .
m2

—_— J h'r kr—-n, T T~n .
a7 (7 + 7" + ¢ )] (106)

The values of w calculated from (106), with use of the
forecast based on initial data at 0300 GCT 23 Novem-
ber, are shown in figs. 14, 15 and 16, together with
surface fronts and weather observations. Fig. 14 was
obtained with 7 = 0, » = —o; fig. 15 with r =24,
n = 6; and fig. 16 with 7 = 48, n = 6. It is suggested
that the flow patterns in figs. 4 and 6 be kept in mind
when interpreting figs. 14—16, since the attainment of
saturation is more a function of the total vertical dis-
placement undergone by a particle than a function of
the instantaneous rate of ascent.

6. Solution of the general quasi-geostrophic equation

In this section, we outline a method for the solution
of the quasi-geostrophic equations of motion for a
general baroclinic atmosphere. The only assumptions,
other than the trivial one of ignoring the horizontal
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component of Coriolis force due to vertical motion,
will be that the flow is adiabatic, quasi-static, quasi-
geostrophic and frictionless.

In the coordinate system x, ¥, p, ¢, the basic equa-
tion of motion may be obtained from (3), (1), (7) and
(8). After some rearrangement of terms, we obtain
the following equation for d¢/d¢:

[V2 + (fn/m?)(6%/op* + a 8/3p) ] 0¢/dt = b, (107)
in which
e=(d¢/dp) dIn6/dp =P—I(Cv/6p) a¢/dp+9%/ap?,
a=—(ne) d(ne)/0p, (108)

b=J(n, ¢)+en(a-+3/0p) J(9¢/0p, $).

The boundary condition at the top of the atmos-
phere (p = 0) is strictly that « = dp/dt = 0. But
because the initial motion is not known at pressures
less than about 100 mb, and because influences from
above 100 mb cannot be expected to affect the low-
level motions within one or two days (Charney, 1949),
we are justified in imposing an artificial, though
physically possible and therefore mathematically con-
sistent, boundary condition. One might, for example,
treat the 100-mb surface as a free surface. In this case,
the boundary condition becomes w = 0 at p = 100,
or, by (1), (6) and (8),

[3(0¢/0t)/0p Jwomy = f7im?® J(86/3p, )10 mb. (109)

For the lower boundary condition, we use the same
device as for the [2 + (# — 1)/n]-dimensional model,
‘except that here we permit the ground to vary in
elevation. Definingw (x, ¥) as the standard-atmosphere
pressure at the ground, we require the three-dimen-
sional flow to be parallel to the surface p =w(x, y)
instead of the ground. Since the slope of this surface
will always differ negligibly from the slope of the
ground, the error introduced will be quite small. The
mathematical form of the boundary condition is de-
rived from the adiabatic equation, and becomes

el ()]
(8¢/3p) L3P \ 0t / Jw

iy I }1 (8¢) ¢] (110)
= - —in 11 - ’ ’
f Cp v /v ldw

where the subscript w denotes evaluation at p = w(x, v).

The lateral boundary condition is obtained by the
same type of reasoning as used for the simpler
models. Here it is the potential vorticity, » d In 6/8p
that moves with the fluid. Supposing first that ¢ is
prescribed on the boundary for all time, we find that
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the potential vorticity must be prescribed where fluid
is entering but must not be prescribed where fluid is
leaving. Since 3 In 6/3p on the boundary is obtainable
from ¢ on the boundary, it is only necessary to specify
n or V%3¢ at inflow points.

The difference analogue of (107) can be solved for
d¢/dt, by an extension of the extrapolated Liebmann
process. In a manner analogous to procedure A, sec-
tion 3, the quantities ¢7 and ¢! would be stored in
the machine at the beginning of the process, and after
(8¢/8t)7 is determined, ¢! would be found from
o™ = ¢™1 + 2 At (3¢/0t)7. The quantities n/e, @ and
b could be recomputed as needed in the iteration
process, or else computed before-hand and stored. In
the former case, the computation time would be very
great, and in the latter the storage requirements would
be unconscionably large. Altogether, the use of either
of these methods is not recommended.

An alternative method, analogous to procedure B,
section 3, would be to let the potential vorticity ¢
carry the history of the motion and determine ¢ as
needed, from a solution of the equation

(f'm? Vi + )67 (co/ )
+ (86/8p)71(0%/3p) ] = ¢, (111)

assuming it were possible. However, the time integra-
tion of g by the conservation law,
g/ = — v-Vq — w dq/3p, (112)

involves the storage of the auxiliary quantity . This
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F16. 14. Vertical velocities (cm/sec) from 2%-dimensional model,
at 0430 GCT 23 November 1950, as forecast from initial data at.
0300 GCT. Also shown are surface frontal locations and weather
observations at 0630 GCT.
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F16. 15. Vertical velocities (cm/sec) from 24-dimensional model,
at 1330 GCT 23 November 1950, as forecast from initial data at
0300 GCT. Also shown are surface frontal locations and weather
observations at 1230 GCT.

quantity would have to be calculated from (1) and
(8), but this requires a contemporaneous value of
3¢/dt. To calculate (d¢/dt)" as a centered difference,
one would have to know ¢™*!, which, of course, is not
known until after the time extrapolation of g. Hence,
a non-centered d¢/d¢, and therefore a non-contempo-
raneous w, would have to be used. If (9¢/3t)" were
approximated by (¢ — ¢™1)/A¢, it can be shown that
the computation would be unstable. Hence, more
sophisticated and complicated methods must be used.
The storage requirements would again become formid-
able. Hence this method is not recommended.

If centered space- and time-differences are used in
the solution of (111), the computational stability is
essentially determined by the simple advection equa-
tion (112). The same heuristic type of argument used
in NI leads to the following computational stability
criterion:

As/At > (N2m|v| + (As/Ap) |@])maxs

where Ap is the vertical increment in p. Writing
8p = |w At|max, we obtain

As/At > N2m |V mex (1 — 8p/Ap).

For any reasonable choice of the increments As, Af
and Ap, it can be shown that 8p/Ap < 1. Hence, the
stability does not depend significantly on Ap; and
As and At should be chosen to satisfy the relation
As/At > N2m | V) max, just as in the case of the simpler
models. -
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The computational difficulties arising in the x, y, p, ¢
coordinate system are also present in the x, y, 2, ¢
system. They are not, however, present in the semi-
Lagrangian system x, ¥, 8, £. This is because the poten-
tial vorticity is advected along a coordinate surface
(6 = constant). Shuman (1951) has discussed some
advantages of the 8 system for the quasi-geostrophic
model. .

We introduce the Montgomery stream-function (the
“‘isentropic acceleration potential’’) ¥:

¥ =T + ¢, (113)

where T, the absolute temperature, and ¢, the geo-
potential, are now regarded as functions of x, y, § and ¢.
The hydrostatic and geostrophic relationships take the
forms

v /a8 = c,T/9, (114)
and

v = fk X VY, (115)

respectively. (Unless otherwise stated, all differentia-
tions with respect to x, v or ¢, here and in what follows,
are to be carried out at constant 8.)

The potential vorticity ¢ may be defined by

g= — (f+)@p/30)7,

where ¢ = dv/dx — du/dy, and the equation for the
conservation of potential vorticity is

(116)

dg 9dq g m?

5 ot + v-Vgq Y 7 J(g, ¥) = 0. (117)
In the derivation of this equation, only the conven-
tional assumptions of adiabatic, non-viscous and hy-
drostatic flow are involved. The quantity /96 in
(116) is readily expressed in terms of ¥, by meansfof
the perfect-gas equation and (114):

9p/36 = constant X (9%/36)>5(9*¥/a6%). (118)

[Here we have set ¢,/(c, — ¢,) = 2.5.] Substituting
this expression into (116), and introducing the geo-
strophic assumption (115), we obtain

g=— (fm V¥ + f)+[(0¥/80)*5(0*¥/36*) ]. (119)

The first factor in the above equation is normally
positive, and the last is normally negative; hence, ¢ is
normally positive. If g is supposed known as a func-
tion of x, ¥ and 8, ¥ can be obtained by solving the
equation?

V2 + m~2fq(d¥/00)25(02¥/36%) + (f/m)* = 0. (120)

Since ¢ is normally positive, this will ordinarily be an

9 Kleinschmidt (1950) has used essentially this same method
to deduce the flow patterns corresponding to simple prescribed
distributions of g.
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elliptic equation in the highest derivatives. The occur-

rence of the non-linear term (8%/d8)*® should give no

trouble. (It may even be approximated as a standard

function of 6.) Schematically, (120) may be solved as

follows. We first define a difference analogue for the

lattice points x = 2 As, y =jAs, 0 =k A0 (1 = 0,1,
e i =0,1, -, sk =0,1,---,7):

O = Vi + Vi + Cipur + Vi — 4%

+' fASZ) (‘I'ijk+1 - ‘Pijk—1)2'5
it )2 2 A8

Yk + Wip1 — Z\I’ijk) (As f)2
7 =0

X ( (A9)? + m /i
(121)

An extrapolated ‘‘Liebmann” iterative process is
defined by

v 1 v v+1
Wi = Vi + a®¥ET,

where it is assumed ‘that the points are scanned in
lexicographic order with k first, j second, and 4 third.
It has been shown (Young, 1951) that the process
converges for certain boundary conditions when the
continuous equation is elliptic, and, of course, in the
absence of the non-linear factor. While no rigorous
proof of convergence can be given in the present case,
there is no apparent reason why the process should
not succeed here also. It is probable that the con-
tinuous equation has no solution compatible with the
physically determined boundary conditions when g is
not greater than or equal to zero everywhere in the
domain of integration. Nevertheless, it is expected

F16. 16. Vertical velocities (cm/sec) from 23-dimensional model,
at 0130 GCT 24 November 1950, as forecast from initial data at
0300 GCT 23 November, Also shown are surface frontal locations
and weather observations at 0030 GCT 24 November.
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that the small “hyperbolic” regions in the atmosphere
will create no difficulty in the solution of the difference
equations, for the reason stated in connection with the
discussion of (81).

The boundary condition at the ground most suit-
able for our present purpose is obtained from (113)
and (114). Setting ¢ = ¢o(x, ¥) and 8 = 6(x, v, t) at
the ground, we have simply

(¥ — ¢aT)os, = (¥ — 60%/38)0s, = dolx,3). (122)

It is also necessary to know how 6, varies. It can be
shown that its variation is given by

360/3t = f~m2 J (80, o), (123)

where ¥, is the stream function at the ground.

For the upper boundary condition, it is convenient
to assume that a sufficiently elevated isentropic sur-
face is fixed in space. The condition is then identical
to (122), except that ¢o(x, ¥) is replaced by ¢.(x, v),
the geopotential of the upper rigid surface:

(¥ — 0 6\1’/60)0=9n = ‘Pﬂ(x’ »)- (124)

Since the surface is isentropic, a counterpart equation
to (123) is not needed.

The lateral boundary condition is derived as in the
previous cases. With ¥ a given function of time on
the lateral boundaries, ¢ must be specified at inflow
points but not at outflow points. The computational
stability criterion is again given by As/At > V2 | v| max,
as in the (x, v, p, t)-system.

We solve the system (121) and the difference ana-
logue of (117) by an obvious extension of procedure B.
With the quantities ¢,, ¢o, 6™, 6", ¥, ¢g* and g™
stored at time 7, we calculate ¥7 from (121), making
use of the boundary conditions (122) and (123) in
difference form, and the given values of ¥ on the
lateral boundary. (d¢/9¢)* is then calculated from the
difference analogue of (117), with use of the lateral
boundary condition on ¢, .., the treatment of inflow
and outflow points on the lateral boundaries will be
the same as that for the simpler models. ¢™+is obtained
from ¢™! and (dq/3%)7, by centered time extrapolation.
(880/9t)7 is evaluated from the difference form of (123),
and 6,7t is determined from 8,7 and (96,/0f)" by cen-
tered time extrapolation. We see that the method re-
quires the storage of the two quantities 6,"! and 6,7 at
the lower-boundary grid points, in addition to ¢, and
Du-

It is necessary to devote some attention to the
proper selection of the vertical grid interval. An obvi-
ous choice would be a constant Af. However, this may
not be the best choice. The problem may be formu-
lated as follows. Given the ability to store data repre-
senting, say, N levels, what-is the “most efficient”
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placement for these levels? — that is to say — how
should they be placed so as to reduce truncation error
to a minimum? The elliptic nature of (121) when
¢ > 0 means that, although the solution ¥ at any one
point 4 depends on the g values everywhere within
the region of integration, it depends most strongly on
the g values nearest 4. [This has been shown graph-
ically by Hinkelmann ef al (1952) for a modified form
of (107), and is also implicit in Charney's (1949) dis-
cussion of the vertical propagation of influences by
the linearized form of (107).] This would imply that
the levels should be closest together at those heights
for which a forecast is most desired, e.g., the lower
troposphere. Furthermore, the initial data are less
accurate at high levels than at lower elevations, so
that a very accurate representation of the observations
at high levels would be partly superfluous.

The quality and density of the aerological network
in North' America suggests that it would be reasonable
to set the upper boundary of the forecast region in the
vicinity of 8 = 400K (p =~ 100 mb). The selection of
a constant A6 would then result in almost twice as
many levels above the tropopause as below! A more
reasonable location of the vertical grid points can be
obtained, however, if one replaces the vertical coordi-
nate 6 by

X = 07" (125)
For n = 10, it can be shown that equal increments in
x correspond approximately to equal pressure inter-
vals. The selection of constant Ax for the vertical
mesh is, therefore, more in agreement with the consid-
erations in the preceding paragraph. The substitution
x = ¢ produces only a trivial modification in the
basic equations (119), (122) and (123). Equation (117)
remains unaltered.

Although the transformation § — x gives a reason-
able spacing of lattice points in the vertical, it does
not eliminate one of the basic difficulties inherent in
the use of the system x, ¥, 8, &. This difficulty is that
the lower boundary of the region, the surface of the
earth, is not fixed in the 6 or x system. This difficulty
is present in the p system also, but has been overcome
there by the device of replacing the actual surface
pressure po(x,v,t) by a standard surface pressure
p = w(x, v). This cannot be.done in the § or x system,
since the surface potential temperature at a given
point may vary within 24 hr by almost as much as
the potential temperature difference between the
ground and tropopause! Although this is not an insur-
mountable obstacle, it means that much extra code
and computation time are required to provide suffi-
cient flexibility in the storage of data at the grid points.
Furthermore, along the verticals with low surface
potential-temperature, there would be perhaps twice
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as many grid points at which data was stored as along
verticals with high surface potential-temperature.

The extremely simple system [(117), (121), (122),
(123), (124)] has evidently been obtained at the ex-
pense of complicating the storage of data and the
treatment of the lower boundary. Since the difficulty
arises from the fact that the ground is not a fixed
surface in the x system, the difficulty may be partly
overcome by transforming the x system to one in
which the ground is a coordinate surface. Since the
earth’s surface has no simple mathematical properties,
it can be expected that the equation of motion will
become more complicated. However, we may avoid
the complication to some extent by solving the equa-
tions in the x system and storing the data in a new
coordinate system, obtained by introducing the ver-
tical coordinate

o= (x — x0)(xs — x0)7%,

where xo denotes the surface x and x, the (constant)
value of x at the upper rigid x-surface corresponding
to 8 = 400K. We see that ¢ varies between 0 and 1,
and takes on the limiting values at the ground and at
the upper boundary, respectively. Thus, the ground
becomes a coordinate surface, and the upper boundary
remains a coordinate surface.

The boundary conditions (122) and (124) remain
essentially the same; we need only the transformation

The equation for the variation of xo, (123), remains
exactly as before.

In the computation, the ¢'s and ¥'s are stored at
the grid points in the o system: x = 4 As, ¥ = j As,
c=kAc.[4=0,1,--,$;7j=0,1,---,¢; k=0,1,
-+, # = (Ag)~L.] The computations involved in (117)
and (121) are then carried out in the x system, the
required values of ¢ and ¥ being derived by interpo-
lation from the stored values in the ¢ system.

We remark finally that thermal and surface fric-
tional effects may be taken into account without
seriously complicating the numerical calculations. If
we no longer assume that the motion is adiabatic,
and denote the individual rate of change of potential
temperature by Q, it may easily be shown [for ex-
ample, as a consequence of Ertel’s (1942) general form
of the potential vorticity theorem] that the potential
vorticity becomes, with small approximation,

dg  9Q q

v
—~=qg—+ V— X VQ-k,

—= (126)
dt f+¢ a8

where
d/dt = a/ot + v-V + Q 8/99. 127

On the assumption that the heating function Q has a
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horizontal scale comparable to that of the motion
itself, one may show that the second term on the right
is small compared with the first. Hence, we obtain

m? a0

" oW +e - 0% (29
5o a0 a0’

at

in place of (117). The equation corresponding to (123)
is then
86

m2
a = 7‘ J (0o, ¥o) + Qo,

(129)
where Q, is the surface value of Q.

Surface friction may be introduced in the manner
suggested by Charney and Eliassen (1949). The fric-
tionally produced convergence in the friction layer
gives rise to a, vertical velocity at the top of the fric-
tion layer which, on the Ekman theory, depends only
on the surface geostrophic velocity. We therefore
replace the surface boundary condition (122) by

d¢ (a +v-V + Q a) v—o¥ (130)
—_ = — v _— —0— ) =
dt ot ® a0 ( ao) gto

where

gwo=vo- Vo + g(K/2f)}sin 2« {o. (131)
Here ¢, is the surface vertical vorticity component, K
the “eddy diffusivity,” and « is the angle between the
isobars and the surface wind. Combining (130) and
(131), we obtain, with small approximation,

d v
— (v — 9 —
at a0

—WJ(\I' 62Y _ 4 \p) 60 (‘W) (132)
T 00 *\oe2/,

5/2 32
_ g(K/2f)(sin 2a) [(‘%) - f] ,

at the top of the friction layer, say 500 m above the
ground.

An alternative method of introducing the effect of
surface friction may be to add to (128) at the ground
level a term proportional to k-V X F, where F is
the effective frictional force in the surface layers. The
lower boundary condition on ¥ would then be simply
(122). This procedure would have the advantage of
not requiring past values of ¥ in the vicinity of the
ground, whereas (132) requires this information.
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