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Introduction

The title of this article indicates its principal theme
but not its full scope, for although we shall explain
the method of formulating and solving certain theoreti-
cal problems and shall interpret the answers in terms
of the initial stages of development of extratropical
cyclones and anticyclones, our analysis has also a wider
significance. Not only does a fundamentally similar
theoretical analysis apply to a wide variety of develop-
ment problems (including, for example, the develop-
ment of “long’” waves as well as the shorter “frontal”
waves and even phenomena due primarily to ordinary
convective instability) so that a comprehensive analy-
sis 1s desirable, but this analysis gives results of primary
importance in the theory of development in general,
that is, from the point of view of the general forecast-
ing problem. We shall infer from our results that there
exist, in general, certain ultimate limitations to the
possibilities of weather forecasting. Certain apparently
sensible questions, such as the question of weather
conditions at a given time in the comparatively distant
future, say several days ahead, are in principle un-
answerable and the most we can hope to do is to de-
termine the relative probabilities of different outcomes.
The full significance of our theoretical problems becomes
apparent only when it is clear what kind of question
we should attempt to answer.

The science of meteorology is a branch of mathemati-
cal physics; it can be fully understood only in a quanti-
tative manner. Moreover, all the practical questions
we should like to answer are of a quantitative charac-
ter. Having discovered the relevant equations of mc-
tion, we ought to aim at obtaining significant integrals
{more precisely, solutions of significant boundary-value
problems) which may be applied directly to practical
problems. In order to obtain tractable problems, and
at the same time to see clearly what we are doing (.e.,
“to see the wood for the trees”), we may, for a first
analysis, simplify the equations by omitting all factors
not vitally affecting the nature of the answer. Later
we may refine our solutions by taking into account
factors previously omitted (e.g., by the method of suc-
cessive approximations), thereby testing whether we
have in fact included all the vital factors. This is a
procedure with which we are familiar and, however
laborious it may bhe in practice, it introduces no new
difficulty in principle. The really serious difficulty is
to discover what kind of problem ought to be solved,
for this difficulty arises as soon as we consider the
question of the stability of atmospheric motion. Ob-
servation suggests that the motion may, at least some-
times, be unstable, and we shall infer from subsequent

analysis that instability (to a greater or less degree)
is a normal feature of atmospheric motion.

It is important to be quite clear as to the meaning
of the term ‘“unstable’” when applied to a system of
fluid motion. If we suppose the initial field of motion
to be given, the final field of motion, after a given
interval of time, is determined precisely by the equa-
tions of motion, continuity, radiation, ete., together
with the appropriate boundary conditions. If we con-
sider a slightly different (perturbed) initial state, the
new final state, after the same interval of time, will be
determined in a similar manner. The stability or in-
stability of the motion depends on the behaviour of
the resulting change (perturbation) in the final state
as the time interval 1s increased. If the final perturba-
tion remains small for all time for all possible initial
perturbations, the motion is stable. If, on the other
hand, the perturbation in some or all regions grows
(initially) at an exponential rate for any possible initial
perturbation, the motion is unstable. There is an inter-
mediate case, conveniently described as neutral stability,
when the perturbations grow linearly or according to a
low-degree power law, but this need not concern us here.

The practical significance of a demonstration that
the motion is unstable is clear, for in practice, however
good our network of observations may be, the initial
state of motion is never given precisely and we never
know what small perturbations may exist below a
certain margin of error. Since the perturbation may
grow at an exponential rate, the margin of error in the
forecast (final) state will grow exponentially as the
period of the forecast is increased, and this possible
error is unavoidable whatever our method of forecast-
ing. After a limited time interval, which, as we shall
see, can be roughly estimated, the possible error will
become so large as to make the forecast valueless. In
other words, the set of all possible future developments
consistent with our initial data is a divergent set and
any direct computation will simply pick out, arbitrar-
ily, one member of the set. Clearly, if we are to glean
any information at all about developments beyond the
limited time interval, we must extend our analysis and
consider the properties of the set or “ensemble” (cor-
responding to the Gibbs-ensemble of statistical mechan-
ics) of all possible developments. Thus long-range fore-
casting is necessarily a branch of statistical physics in
its widest sense: both our questions and answers must
be expressed in terms of probabilities.

There are two important connections between these
general considerations and subsequent analysis. Firstly,
this analysis will show the existence of at least one type
of large-scale unstable disturbance in a simplified but
typical system, and we shall infer that instability is a
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normal feature of atmospheric motion. Although the
unstable disturbances are continually tending to estab-
lish a new stable state, radiative processes are continu-
ously tending to restore the initial system, which there-
fore remains permanently unstable. Secondly, for such
a system the study of the ensemble of all possible
perturbations is relatively simple. In each system there
exists a disturbance of maximum growth-rate (so that
we can determine the growth of the margin of error
and estimate the limited time interval referred to above)
which eventually becomes dominant in subsequent de-
velopments by a process analogous to Darwinian natu-
ral selection. Almost any initial disturbance tends event-
ually to resemble the dominant, which is therefore
the most probable development. The “ensemble” pos-
sesses at least some strongly marked statistical proper-
ties which may be utilised to extend the range of
forecasts. In spite of inaccuracies due to oversimplifi-
cation this result is practically significant. The dis-
turbances referred to are approximations to nascent
cyclones, long waves, etc.; were it not that ‘“natural
selection” is a very real process, weather systems would
be much more variable in size, structure, and beha-
viour.

The Basic Equations

We shall regard as basic equations the three dynami-
cal equations, the thermal equation, and the equation
of continuity; others, such as the gas laws and the
laws of radiation, will be regarded as subsidiary. The
number of dependent variables we need, or that we find it
convenient to use, depends on the nature of the prob-
lem and the degree of accuracy aimed at. In the prob-
lems with which we shall be concerned it is possible to
express the basie equations in terms of the three com-
ponents of velocity, pressure, and entropy (or density)
alone so that the five basic equations, together with
appropriate boundary conditions, form a complete set.
Clearly these equations can be appropriate only for a
limited range of problems when certain approximations
are justified; we shall in fact make further approxima-
tions, our aim being to retain only those terms which
are of prime importance in the range in which we are
interested.

A completely realistic theory of the stability of at-
mospheric motion should deal with nonsteady initial
conditions, but for simplicity we shall confine our at-
tention to the case in which the initial motion is
steady, and in fact we shall be concerned mainly with
rectilinear horizontal motion. Our analysis will be ap-
proximately true even when the very-large-scale distri-
bution is slowly changing.

The relative importance of the terms in our equa-
tions depends partly on the scale of the phenomena
with which we are concerned. Here we are interested
in disturbances of the order of magnitude of nascent
cyclones, say 1000 km in horizontal extent and occupy-
ing a large part (or the whole depth) of the troposphere.
From our point of view ordinary or gravitational con-
vection, originating from static instability (¢.e., super-
adiabatic lapse rate), and ordinary turbulence of fric-
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tional or convective origin are small-scale phenomena.
The epithet “ordinary” is appropriate in each case
because the disturbances whose nascent form we are
studying may be regarded as elements of a large-scale
convective process and this process, regarded statisti-
cally, is a kind of large-scale turbulence. From our
point of view the significance of small-scale turbulence,
including ordinary convection, lies in its statistical
properties, such as ability to transport heat, momen-
tum, etc. Now frictionally induced turbulence is most
effective near the earth’s surface, and rough calcula-
tions (which we have not space to describe) using
empirical estimates of skin friction indicate that fric-
tional dissipation of energy usually has a relatively
small effect on the development of large-scale disturb-
ances (especially over a sea surface) in their nascent
stage, provided the unstabilising factors are not too
weak. Since we are most interested in those regions
where the unstabilising factors are relatively strong,
we may obtain a useful first approximation during the
nascent stage if we neglect the frictional terms in the
equations of motion. It is not possible to neglect fric-
tional terms throughout the whole life-history of a
disturbance because in the long run the kinetic energy
destroyed by friction must equal that generated as a
result of instability.

Surface friction transports heat vertically through
a shallow layer, but since we are interested in the be-
haviour of deep layers this effect will be neglected.
Moreover, surface turbulence is partly convective in
origin, and we may regard shallow convection as in-
cluded in this argument. But sometimes (e.g., in strong
polar outbreaks) deep and widespread convection trans-
ports heat to great heights at a great rate. We shall
ignore this possible complication and concentrate our
attention on systems in middle and high latitudes
which are statically stable in their initial stages.

Just as, in the long run, we cannot ignore skin fric-
tion so, in the long run, we cannot ignore radiative
processes. Large-scale turbulence (the statistical aspect
of our disturbances) appears to be a major factor in
transporting heat poleward to compensate the unbal-
anced radiation flux. But during the nascent stage,
development (measured by the time for growth of
the disturbance by a given factor) is relatively rapid
and it is precisely for this reason that we are able to
neglect frictional terms. Hence it is reasonable to sup-
pose that in the nascent stage we may, for a first ap-
proximation, neglect the change in the radiation bal-
ance caused by the disturbance and use for our thermal
equation the adiabatic equation.

Consider first the case of unsaturated air. To a close
enough approximation the entropy of dry air is meas-
ured, in suitable units, by ® = (1/v) In p— ln p, where
p = pressure, p = density, ¥y = specific heat ratio, and
& js conserved during the motion. In this case we shall
define the static stability, which measures the restor-
ing force due to gravity on a particle displaced verti-
callv, as 0®,/dz (z = vertical coordinate). Now con-
sider the case of saturated air in contact with a cloud.
The static stability is now measured by the difference



466

between the actual entropy lapse and that of the ap-
propriate wet-adiabatic. Thus there is a sharp, and
usually a large, reduction in static stability when air
becomes saturated. The effective horizontal entropy
gradients are also modified as a result of saturation,
but to a much smaller extent. Normally a cloud mass
behaves, to a sufficiently close approximation, as if
the air were unsaturated except for the appropriate
modification in statie stability.

Our equations are complicated by the fact that air
is a compressible fluid, but it is clear that this feature
is not, for our purposes, a significant one. We are
concerned essentially with a particular type of “vibra-
tion” problem though our disturbances have mathe-
matically complex wave velocities. The moduli of these
wave velocities are in all cases, as our calculations
verify, small compared with the velocity of sound. It
is not surprising therefore that the forces associated
with compressibility are negligible, that is, that the
air behaves dynamically as if it were incompressible.
The static effect of compressibility, involving a large
change of density with height, is a complication which
prevents atmospheric motion from being quite the same
as that of an incompressible fluid. Nevertheless, even
for deep disturbances, the behaviour differs little from
that of an incompressible fluid of similar mean density:
the modifications are essentially of the nature of distor-
tions of wave structure without much change in more
significant features like growth rate. We shall therefore
confine our attention to “equivalent’” incompressible
fluid systems. Our results are, of course, more directly
applicable to analogous oceanographic problems.

Lack of space prevents a discussion of these points
in mathematical terms. It has been shown elsewhere
{3] that the basic equations may be further simplified
by the elimination of the pressure field, so that we
have finally four equations connecting the four de-
pendent variables V., V,, V, (velocity components),
and @ (entropy). But our present concern is the physical
interpretation and practical significance of certain caleu-
lations rather than the calculations themselves.

The General Theory of the Instability of Fluid Motion

The various types of instability occurring in dynami-
cal meteorology merge into one another so that most
systems encountered in practice are, to a greater or
less degree, hybrid. Nevertheless it is not only simpler
but theoretically more instructive to consider certain
ideal limiting cases where one or another unstabilising
factor acts alone. Four simple types of instability will
interest us:

la. Gravitational instability (ordinary convection or
static instability).

1b. Centrifugal instability (dynamic instability).

2a. Baroclinice instability (with thermal wind).

20. Helmholtz instability (at a velocity discontinu-
ity).

Instability of type la is, in middle and high latitudes,
nearly always a small-scale phenomenon, but in low
latitudes a modified form, taking into account the
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rotation of the earth, 1s intimately concerned with the
development of tropical cyclones.

Instability of type 1b has been the subject of much
recent, investigation, usually under the heading ‘‘dy-
namic instability,” but despite its theoretical impor-
tance it is probably rare for large-scale motion. The
name ‘‘centrifugal’” has been preferred to ‘‘dynamic”
because it is more descriptive and less confusing—other
types of instability may reasonably be called “dy-
namic.”

Instability of type 2a is probably the most important,
on a large scale, in middle and high latitudes. It is to
this type that our earlier remarks regarding the normal-
ity of instability and the existence of “natural selec-
tion” directly apply.

Instability of type 2b was investigated by Helmholtz
and Rayleigh for nonrotating barotropic fluids. The
Norwegian wave theory of ecyclones was a partially
successful attempt to extend the theory to rotating
barotropic fluids. i :

Although we shall choose our initial systems so that
only one type of instability is in question, the same
general method of analysis applies in every case. Using
the method of small perturbations, we obtain a set of
simultaneous, linear, partial differential equations in-
volving the perturbations as dependent variables. By
elimination we obtain a partial differential equation
with only one dependent variable and look for simple
solutions satisfying appropriate boundary conditions.
Usually these solutions involve only circular or expo-
nential functions in the horizontal (2 and ¥ directions)
and all contain the factor e”* where ¢ represents time
and 6, is a constant called the growth rate. For 6, to
be real we usually have to use a moving coordinate
system. Fortunately these solutions for unstable waves
are, practically, the most important ones and the dis-
turbance of maximum growth rate, when it exists, is
probably dominant relative to one of arbitrary initial
structure. In any case a study of these particular solu-
tions enables us to understand the process of breakdown
of the initial system and to estimate the relative im-
portance of various factors.

The method of analysis outlined above is necessary
if we require precise results and is the only one which
is completely unequivocal. But it is mathematical in
form and usually rather involved so that significant
physical principles, which give us insight into our prob-
lems and immediately suggest generalisations, tend to
be obscured. Now, except that our interest is centred
in the unstable region, we are concerned with what are
essentially vibration problems and we may expect to
find that energy considerations are of paramount im-
portance. For, by the law of conservation of epergy,
the kinetic energy associated with any perturbation
must be equal to the decrease in “potential”’ energy of
the system, and a necessary condition for instability
is that it should be possible to find displacements which
will decrease “potential’’ energy; the condition will be
sufficient only if these displacements are consistent
with all the equations of motion and boundary condi-
tions. More precisely, using Rayleigh’s method, we
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may express separately the changes in kinetic and
““potential” energy in terms of arbitrary displacements
of the form éx = e’t'8x0(x, ¥, 2), ete. The kinetic energy
change contains the factor 6}, while the “potential”
energy change does not, so that the law of conserva-
tion of energy gives an expression for 6% in terms of the
displacements. The possible simultaneous values of the
displacements are restricted (or constrained) by the
equations of motion and we can to some extent delimit
possible values of 6} by considering only some of the
constraints, as in somewhat analogous problems in
dynamies. In the present instance we consider only
the equation of continuity and one momentum equa-
tion (and suitable boundary conditions) and then ap-
ply algebraic inequality theory to our undetermined
displacements. We thereby obtain an upper bound to
the possible value of 8} (corresponding to negative square
of frequency) just as in dynamics we obtain a lower
bound to frequency (squared) by considering a less
constrained system.

The value of the foregoing, described in more de-
tail elsewhere {3}, derives partly from the fact that
we can treat a wider variety of problems than we can
by complete solution, while the value of 8 (maximum)
thereby obtained is usually not much greater than the
true value of 6} . But its greatest usefulness is that it
makes the process of breakdown of unstable systems
immediately intelligible. If we take into account only
our limited set of constraints, it is immediately evident
what kind of displacement field is necessary for a re-
lease of “potential” energy. It is of course essential
that the term ‘“‘potential” energy be correctly inter-
preted. For our purpose it comprises all forms of energy
other than the kinetic energy of the perturbation and
therefore includes, besides gravitational potential en-
ergy, the organised kinetic energy of the mean flow
(smoothed of harmonic variation). This distinction be-
tween two kinds of kinetic energy change is justified
by their different roles in the turbulent motion which
is the ultimate state in practice: turbulent energy may
arise either from a decrease in gravitational potential
energy or from a decrease in kinetic energy of the mean
motion. We may classify our systems according to
whether the “potential” energy source is (a) static
(gravitational) or (b) dynamic (kinetic). Now the dis-
placement field is merely the nascent form of a process
of overturning and we shall need to consider only two
possibilities: (1) overturning in a vertical plane; (2)
overturning in a quasi-horizontal plane. Thus we may
also classify our systems according to the kind of over-
turning associated with instability. In our list of four
simple types of instability we anticipated their classi-
fication from both points of view. Let us consider the
characteristics of these systems.

la. Gravitational Instability. We consider barotropic
conditions, so that initially there is no wind change
with height, and for simplicity we suppose that d®/dz =
B, where B is constant. If, to begin with, we neglect the
rotation of the earth, then ‘“potential” energy exists
only in gravitational potential form. Suppose that two
small parcels of air of equal potential volume were
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slowly interchanged. Then since potential density would
depend only on entropy, we should obtain, if B were
negative, a net release of energy for any two parcels
at different levels, while if B were positive no inter-
change could release potential energy. Clearly the con-
straints associated with the continuity equation cannot
alter this result—the overturning process is equivalent
to a set of such interchanges of different amplitudes.
Since horizontal motion does not affect potential en-
ergy we need consider only vertical overturning; caleu-
lations by the energy method give 88 < —gB, where
g = gravitational acceleration. Of course in this simple
case it is easy to obtain complete solutions, represent-
ing the nascent stage of Bénard cells, and calculations
show that 6} (maximum) is nearly attained for narrow
deep cells, where little energy is wasted in horizontal
motion. We shall postpone the extension to large-scale
convection, where the rotation of the earth is con-
sidered, since this is really a combination of types
la and 1b.

1b. Centrifugal Instability. We shall suppose the mo-
tion to be barotropic and horizontal with the initial
velocity V. a function of y only. For simplicity we
take d17,/dy constant and, to begin with, we put B = 0
(isentropic conditions). Then “potential”’ energy exists
only in the “kinetic” form. Let us consider the change
due to overturning in the (vertical) y, z plane. Fila-
ments of air in the z-direction move as a whole and we
easily derive from the equations of motion that, during
displacement, 81, = fdy, where fis the Coriolis parame-
ter. If the wx-axis is directed toward the east, this cor-
responds to constancy of absolute angular momentum.
But for our purposes, where a mean value of f is used,
the orientation of the x-axis is arbitrary. A simple calcu-
lation shows that potential energy is released only if
dV./dy > f, corresponding to negative absolute vor-
ticity, and the energy method gives 8} < f(dV./dy — f).
Although values of dV./dy near the critical value are
sometimes observed in narrow bands, it is doubtful
whether centrifugal instability ever occurs on a large
scale except perhaps in low latitudes. The rotation of
the earth, normally at least, has a stabilising effect so
far as vertical overturning is concerned.

Similar results are obtained if, instead of rectilinear
motion, we consider a barotropic eircular vortex (with
no motion relative to the earth as a special case).
The condition for instability is again negative absolute
vorticity.

We may note that in both the foregoing cases maxi-
mum instability occurs for shallow, flat, cells since
“potential” energy changes depend only on horizontal
motion (no energy is wasted in vertical motion).

Lab. Gravitational-Centrifugal Instability. It is easy
to combine the results of the previous sections for a
system in which neither B nor dV./dy vanishes. There
is instability if either B or (f — dV./dy) is negative,
for the cells may be either so deep that centrifugal
stability is negligible or so shallow that static stability
1s negligible. The important practical case is that of no
motion (special case of circular vortex) with B < 0.
Instability oceurs for disturbances which are sufficiently
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deep relative to their breadth, the condition being that
there should be a net release of “potential”’ energy.
In low latitudes not only is — B sometimes (temporar-
ily) relatively large but the stabilising effect of the
earth’s rotation is small, so that convection cells of
relatively enormous diameter (nascent hurricanes) can
develop.

In general, maximum growth rate corresponds either
to very deep or to very shallow cells but this result is
not of great significance because practical systems are
very inhomogeneous.

2a. Baroclinic Instability. We suppose the initial mo-
tion to be rectilinear and take the initial velocity V.
to be a function of z only. For equilibrium this implies
a horizontal gradient of entropy A = 4%/9y, where,
approximately (A not too small), dV./dz = —gA/f.
For simplicity we suppose A4 to be constant. Pure
baroclinic instability should correspond to B = 0, but
it will be convenient to consider directly the more
general case B ## 0. In practice we usually have (at
least in the mean) B > 0, and this is the only case we
need examine, for when B < 0 the system is obviously
unstable. The isentropic surfaces have an angle of
slope a( <r/2) given by tan a« = | A/B | and in prac-
tice we normally have tan o < 1.

Consider first the change in gravitational potential
energy resulting from interchange of parcels of air in
the manner of subsection 1a. The result is no longer
independent of the y-displacement. If the direction of
displacement lies outside the acute angle «, there is
an increase of energy, but if it lies inside, energy is re-
leased. There is zero change for displacement either
along the isentropic surfaces or horizontally, and calcu-
lation shows that maximum release of energy occurs
(approximately, assuming o << 7/4) for displacement
m the direction of the bisector of « (in the y, z plane),
which we shall call the s-axis. Now consider the change
in kinetic “‘potential” energy. If the overturning were
in the vertical plane, this would occur in the manner
of subsection 1b, with increase of energy. But if over-
turning occurs in thex, s plane (i.e., quasi-horizontally),
with the perturbations varying harmonically in the
z-direction, there is no change in the mean motion and
no change of energy (correct to the appropriate order
of small quantities). Hence our energy method gives
instability in all cases and on calculation:

61 < —y,B, %i';;,,
where ¢, and B, are the components of gravity and
entropy gradient, respectively, along the s-axis (note
analogy to la) and h? is the Richardson number defined
by h? = gB/(dV",/dz)".

This result is of course provisional but, as in other
cases, is verified by complete solution. With artificial
(but physically possible) boundary conditions we can
obtain nearly the maximum value of 6,, but a more
realistic model gives 8, = 0.31 f/h. The reduction in
the coefficient from 0.5 to 0.31 is due to the additional
constraints imposed by the boundary conditions, as a
result of which displacements cannot everywhere be

(h*>>1),
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in the optimum s-direction: for one particular wave
length (more precisely, for one ratio of horizontal to
vertieal “wave length’), the displacements are as near
optimum as possible and it is to this dominant wave
that the coefficient 0.31 applies. Longer waves grow
more slowly while very short waves are stable. Thus
there is “natural selection” for one particular wave
structure. It has been shown elsewhere how, by con-
sidering compound systems containing a region where
h? is a minimum, realistic models of both nascent wave
cyelones and long waves may be constructed. Briefly,
the smaller disturbances develop in frontal regions,
where cloud masses 1educe the effective static stability
and therefore also k% The long waves occupy the whole
troposphere, and secondarv modifications, caused by
constraints associated with the variability of the Cori-
olis parameter, are then significant.

lab. Generalised Vertical-Overturning Instability. We
may consider from the point of view of vertical over-
turning an initial system similar to that of subsection
2a, but it will be convenient to generalise by supposing
V. to vary with y as well as with 2. Then using the
same general method as before, we obtain

s <[ - 5)]

oo

+af (- %)),

where the surd has always to be taken as positive.
This is the general formula for vertical overturning,
including the examples previously given as special cases.
If either B < 0 or dV./dy > f, the system is certainly
unstable. If neither condition is satisfied, we require
for instability (gA)2 > ¢Bf(f — dV./dy), which is
equivalent to 1/R* > {1 — (1//)(dV./dy)}]. In the im-
portant special case when dV./dy vanishes, this con-
dition becomes simply A* < 1, equivalent to the well-
known condition of negative absolute vorticity in the
isentropic surfaces.

2b. Helmholtz Instability. Consider the system of two
barotropic air masses with uniform horizontal motion
V.= U,in one, and V', = U, in the other, separated
by a vertical “front” at the z, z plane. If the earth
were not rotating, we could apply the well-known
results of Helmholtz (complete solutions) which show
this system to be unstable for all perturbation wave
lengths, growth-rate being inversely proportional to
wave length, but it is instructive to apply the energy
method. Helmholtz’s solutions involve only horizontal
motion, associated with corrugation of the ‘“‘front,”
so we need consider only horizontal overturning. The
“‘potential”’ energy is entirely “kinetic” and the manner
of its release is clear from the flow pattern, obtained -
by considerations of continuity and boundary condi-
tions alone. Outside the y-limits to which the corruga-
tions of the “front” extend, the mean motion is un-
altered, but inside these limits there is a change in the

+
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mean flow of each air mass (in opposite directions)
resulting in a decrease in organised kinetic energy (see
Fig. 1).

FiG. 1.—Helmholtz waves. Arrows with a single head and a
single shaft denote perturbation velocities; those with a single
head and double shaft, perturbation mean veloecities; those
with a double head and a double shaft, initial velocities.

Now, as we have seen, the earth’s rotation has a
stabilising effect only when there is vertical overturning.
Hence we should expect results similar to those men-
tioned above when the earth’s rotation is taken into
account. Complete solution of the problem confirms
this, and 87 = (\/4)(U, — U.)?, where 2x/\ is the
wave length for a rotating, as well as for a nonrotating,
system.

In practice, B is usually strongly positive so that
any vertical motion would decrease the net release
of “‘potential” energy. Moreover, frontal surfaces are
not usually vertical and in general the boundary
conditions cannot be satisfied by purely horizontal
motion. Hence a sloping front is less unstable than a
vertical one. Since the unstabilising effect of a velocity
discontinuity is inversely proportional to the wave length,
whereas the stabilising effect of static stability is in-
dependent of the scale of motion, it follows that only
waves shorter than a critical wave length are unstable.
Very short waves are always unstable because static
stability may be neglected.
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Future Developments

The discussion above is merely an outline of ele-
mentary principles. Although our analysis shows that
the equations of dynamical meteorology are by no
means intractable from the point of view of computing
future developments, the results so far obtained are
only of limited applicability. Our calculations give only
the initial form of the most probable (dominant) new
development and we need to compute the further de-
velopment when the perturbations are no longer small.
As the period of the forecast is extended, analytical
methods become increasingly involved and clumsy and
sooner or later we have to resort, at least partly, to
numerical methods. An adequate degree of accuracy
is practically attainable only with the use of computing
machines, and electronic large-memory computers will
play an important part in extending and generalising
the elementary theory.

The development of numerical methods, even to the
extent of a direct attack using observed data, does not
absolve us from the necessity of understanding the
precise significance of our solutions. Not only do we
have to know how and where to approximate, but the
reliability of our solutions varies with time, place, and
forecast period. In fact for long forecast periods what
1s significant is not the detail, which is usually partially,
perhaps entirely, accidental (7.e., dependent on minu-
tiae below the margin of error), but the general nature
(e.g., persistently settled or unsettled) of the majority
of possible solutions. We need to develop the statistical
theory referred to earlier. Not all the questions about
future weather we should like to answer are in fact
answerable, but it may well be that the growth of un-
certainty in some directions is compensated by statisti-
cal regularity in others.
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