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Abstract

The problem of setting up a system of equations by means of which the future large-
scale flow pattern might be computed, using an electronic calculating machine, in a rea-
sonable time and with maximum accuracy and cfficiency, is discussed. Equations deter-
mining the development of a two-parameter, two-dimensional ‘model’, capable of repre-
senting the major features of motion of a baroclinic atmosphere, are derived. Tests of
the model are made on some representative problems, the accurate three-dimensional

solutions of which are known.

Now that actual computation of certain
aspects of the weather forecast has become a
practical possibility, interest in certain simpli-
fied “models” of atmospheric motion has
increased. It seems at first paradoxical that
this should be so. For although one necessary
prerequisite for weather computing, an ade-
quate network of upper-air data, has only
recently become available, the main cause of
optimism regarding the possibility of actually
arrying out the necessary calculations in the
time available has been the development of
large-memory high-speed electronic com-
puting machines. These machines work so
very much faster than human computers that
it is natural to suppose that at last we can
forget about crude “models” and compute
changes in the “actual” atmosphere. Practical
experience in attempting to design a computz-
tion scheme is disillusioning. It is not merely
that certain approximations (equivalent to
replacing the “actual” atmosphere by a “mod-

el” but resuling in very little change in
those aspects of the motion related to weather)
are highly desirable from the point of view of
computational simplicity, speed and stability.
The main diﬁicuf . whicﬁeappears to result
as the combined effect of 4 dimensions (3
space and I time) and non-linear equations,
is the very rapid increase in computation time
with increase in representation of “detail”.

It is worth while to attempt to express the
problem in general terms. At a given instant
the weather situation may be regarded as re-
presented by certain values of a number of
parameters which may, but need not, be the
values of pressure, temperature etc. at_points
on a 3-dimensional grid. Just as the definition
on a television screen increases with increase
in the number of spots so the accuracy with
which the weather situation may be represented
increases with increase in th number of
parameters. The equations and boundary
conditions of motion together with the ther-
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mal and continuity equations determine the
rate of change of these parameters and there-
fore the forecast situation, but since the
equations involve details cither not represented
or inaccurately represented by the parame-
ters some approximations are inevitable. The
forecast will therefore contain not only errors
of detail due to the use of a finite number of
parameters but these parameters themselves
will necessarily be to some extent in error.
It is important to recognize these two kinds of
error which are unavoidable even when the
computations are made with complete accu-
racy. To distinguish them from a third type
of error to be discussed later they will Ec
referred to as “physical” or “model” errors.
They arise simply and solely because we
cannot include all the accurate data. Whether
or not such errors are serious depends partly
on the number of parameters, partly on the
manner in which they are chosen. If the param-
eters are judiciously chosen it may be pos-
sible to represent with sufficient accuracy gc(:th
the features in which we are most interested
and those primarily responsible for changes in
them, witﬁ only a comparatively small num-
ber of parameters. The problem is to discover
the most efficient representation, that which
enables us to calculate the important features
as directly as possible, short-circuiting irrel-
evant detail. Ideally any significant variation
in the initial values of any one or more of the
parameters should correspond to a significant
difference in the forecast. An advantage of
looking at the problem from this point of
view is that it suggests the right sense of pro-
portion. Clearly there is no point in computing
with more independent well-defined param-
eters than are determined by the initial
data. On the other hand the forecast will
contain the same number of parameters and
therefore the same amount of detail: it will
be as good as one obtained by more elaborate,
time-wasting methods.

This abstract, mathematical approach gives
us the general idea and is a good practical
guide in the later stages of design of a com-
puting scheme. In the carly stages, however,
the guidance is too vague and a different,
physical approach which, though basically
equivalent, is more specific, is preferable.
Let us commence with an example. It is
well known that if ‘we are interested in motion
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on a grand scale we may usefully replace the
“actual” 3-dimensional atmosphere by a 2-
dimensional ““model”, the “barotropic model”.
There is 2 more or less close relation between
the horizontal component of the grand-scale
motion at about §00 mb in the atmosphere
and the motion computed for the model,
Here the model is a physically possible hydro-
dynamic system different from the atmosphere
but behaving, in many important respects,
in a similar manner. We might have set up
this model directly from physical reasoning.
On the other hand if we had integrated the
vorticity equation along the vertical and then
neglected certain terms we should have ob-
tained the same final equations and it might
be regarded as an accident that these equations
correspond to a simple hydrodynamical sys-
tem. From the point of view of our earlier
abstract approach we should have suppressed
all the parameters representing wvariation in
the vertical. Setting up 2 model is equivalent
to making certain approximations and since
all computers have to make approximations
there is no inherent defect in the use of mod-
els. On the contrary, if approximations
correspond to setting up a model we can be
sure tlfat the former are at least sclf-consistent.
It does not follow, however, that the most
suitable approximations must orrespond to a
physically possible system. The representation
to be described does not accurately correspond
to any physical model though it does approxi-
mately do so. If the word “model” had not
already been used rather vaguely it might be
preferable to use some other word but since
one advantage of the representation is the
simplicity of physical interpretation and since
the epithet 2 ¥;-dimensional” is already pic-
turesque it is convenient to call this represen-
tation 2 “model”. It represents an improve-
ment on the barotropic model in 'so far as it
contains a very crude representation of varia-
tion in the vertical, so crude as to be considered,
playfully, as worth only half a dimension!
Such a crude representation, with only
two parameters along each vertical, may be
iven some’ preliminary justification. In the
irst place the barotropic model, with only
one parameter along the vertical, has already
had some success. Theoretical reasoning also
suggests that we may have a good sense of
proportion if we use many more parameters
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to describe horizontal variation than vertical
variation. For, making much less stringent
approximations, we may set up the equation
for a 3-dimensional model in the form: (Eapy,

1949, - 47)

L[, P, P
T dt|ox® 9yt (Vb2

o (1)

Here p is the pressure deviation from a standard

value, x and y are horizontal and z is the
vertical co-ordinate. % or — EQ , where @ is
oz e Iz

potential tcmperaturc) is the static stability,

4 op,
dy[)x'

Vb=

g the acceleration of gravity, f the coriolis
factor. Thus b is a pure number. A typical

value in middle latitudes would be V' =~ 100.
Now although (1) is inaccurate for disturb-
ances which are too intense, the form of

the equation strongly suggests that Vb is a
scale factor, representing the ratio of dynam-
ically equivalent distances in the horizontal
and vertical respectively. Thus the distance
. from ground to tropopause (say 10 km) is
dynamically equivalent to a horizontal dis-
tance of about 1,000 km. If therefore we
devote 2 parameters to representation along
the vertical we should use 1 parameter in
about 500 km in each horizontal direction.
Since we need to consider the field over many
thousands of kilometers in the horizontal
_ it is clear that most of our parameters should

describe horizontal variation. Unless the data
. are sufficiently detailed and accurate to deter-
mine with some accuracy more than one
parameter per s00 km x 500 km square we
are not justified in attempting to use a more
accurate model. Although we cannot say
. without more investigation just how many

parameters at a given (upp(:r)J level are well-
determined by the data this number cannot be
greater than the number of radio-sondes. It
may, owing to inaccuracy and bad spacing of
the sondes be much less. Hence it would
appear that models of the kind to be described
. are not much, if at all, cruder than the best

justified by the available data. Any attempt to
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rcfprcscnt much more detail would be a waste
O

time in weather computing. (This is not
true of course for calculations designed to give
theoretical insight.)
Instead of looking at the problem from the
oint of view of the amount of detail justified
Ey the initial data we may look at it from the
point of view of the computation time.
Suppose we have an® parameters where a=1
for the barotropic model and a=2 for the
present model. n is the number of parameters
representing variation in each horizontal
direction. Now with linear equations it is
frequently possible to choose the parameters
in such a manner that the varation of each is
independent of all the others. With non-
linear equations it is, however, not usually
possible to separate the variations in this
manner and in general the variation of each
parameter depends on all the other parame-
ters. It is evident that for accurate calculations
the number of arithemetical operations will
increase much faster than n3. It looks as if
the number of operations should vary as »*
(as it does when the relevant difterential
equations are solved by means of a Green's
function) but it is possible with both kinds
of model so to arrange the work that the
number of operations varies only as #%. Nev-
ertheless the time required for the computa-
tion of time-variations, and therefore for each
small time-step in preparing the forecast,
increases rapid.g' as more detail is included.
The increase in time taken to calculate the
complete forecast is still larger because with
more detail smaller time-steps have to be
taken. Without going into details it is evident
that we must be content with quite moderate
values of n and it is important that we should
choose an efficient parametric representation.
To give an idea of the magnitudes involved
it may be mentioned that the writer estimates
that, using the most rapid method known to
him the value n =13 is about the largest that
(corrcspondiEF toa=2)a high-scfced electronic
computer could cope with in order to prepare a
forecast within a few hours. It is important to
note that this is based on the assumption that
the method must not lead to serous errors
in the forecast parameters due to computational
faults. Computational methods and errors
associated with them will not be discussed
here as they will form the subject of a sub-
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sequent paper. It will suffice to note that most
of the methods at present in use suffer from
very serious computational errors: the number
of parameters whose variation, over 2 rea-
sonably long time interval, is reasonably
accurately computed (as compared with the
true variation of the model) is much smaller
than the number of grid points and often very
small indeed. Thus whatever method we use
the amount of true information is not very
large and it is in fact actually harmful to try to
inc%udc more detail than we can cope with.

In barotropic motion (or, more generally, in
motion without horizontal temperature gra-
dients) there is no variation of motion with
height so that only two space dimensions are
involved. In baroclinic motion not only is
there vertical motion but even the horizontal
motion is a function of three dimensions.
However, there is considerable synoptic evi-
dence that for large-scale motion the major
variations in the horizontal motion are describ-
ed by supposing the thermal gradient inde-
pendent oF height. Hence we can construct
a model of the horizontal part of the motion
with two 2-dimensional fields, the field of
the mean motion (averaged with regard to
height) and the field of relative motion, the
mean thermal wind (also averaged with
regard to height). Alternatively by adding
and subtracting a suitable multiple (either
constant or at least independent of the fields
of motion) of the relative motion to the mean
motion we can express the model in terms of
the motion at two representative levels. Now
in horizontal barotropic motion the motion is
(to a vcrz close approximation) non-diver-
gent so that in this case the mean motion
(here the actual motion at any level) may be
represented by a (scalar) stream function .
In the case of the model with both mean and
relative motion we shall find that each of
these may be regarded as approximately non-
divergent so that now in addition to the stream
function for the mean-motion, ¥, we have the
stream-function for the relative motion, @.
These will be regarded as (at a given time)
independent, though of course their changes
are interrelated. The idea of using a model
of this type appears to be due to Surcrire
(1947) who has described one in which there
are two representative levels. The method of
derivation of the equations given below is
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in some respects rather similar to Sutcliffe’s
though there are important differences in the
way approximations are made, in the ancilliary
assumptions and in the presentation of the
results. The most important difference is the
inclusion of the effect of vertical motion on
the W-field.

The definition of the ¥ and @ fields serves
merely to describe the motion succintly. In
order to obtain a working model we hav: to
derive sufficient (i.e. two) partial differential
equations, with boundary conditions, which

determine —, 29 in terms of ¥ and @ only,

o’ ot
(or in terms of quantities which can be com-
puted when ¥ and @ are given). In order to
do this it will be necessary to make further
assumptions or postulates some of which
may be regardc:dP as fairly plausible, others
somewhat arbitrary. The final test of these
assumptions is the closeness with which the
model simulates the behaviour of the atmos-
phere and for this reason a “test” on a problem
which has been solved in three~-dimensions,
with much less stringent assumptions, will be
included. Some of the assumptions made are
not absolutely necessary but have the advan-
tage of simplifying the presentation. By making
more complicated assumdptions it may be
possible to improve the fidelity of the model.
Alternatively a similar result may be obtain-
able if suitable (empirically determined)
weighting factors are included. Actual use
of the model will indicate what type of modi-
fication is most effective.

We shall suppose that the model represents
motion on a large scale and that this motion
is quasi-geostrophic, that is to say that at all
or almost all points the geostrophic formula
gives a fairly
velocity field and also the curl of the velocity
field. The horizontal divergence cannot of
course be computed directly iut is given with
fair accuracy by the vorticity equation,
obtained by eliminating the pressure field
from the equations of motion. When motion

ood approximation to the

is on a large scale and the Richardson number -

large compared with unity we may probably

tfnore the contribution to vorticity change
ue to overturning in a vertical plane and write:

divHv(f+curlHu)+d%(f+ curlyv) =o (2)
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If at the same time we use (in place of the
“actual” atmosphere) an incompressible model
with the same static stability (but little varia-
tion of mean density with height) then we have
for the continuity equation

. IV
dlvHv—%——;;'——o ....... . (3)
whence:

(f+ ewrly v)%vf = z% (f+ curluv).. (4)

As is well known, a2 much more accurate
continuity equation, of similar form to (3)
is obtained when instead of z we use for a
vertical coordinate the mean pressure p and

at the same time replace v, by v, = % The

only modification in (4) is the replacement of
s b v,
oz Y ap
subsequent analysis may be carried out using a
“pressure”’ vertical coordinate. Then instead
of making our approximations in the conti-
nuity equation we make them in the “thermal
wind” equation. The results are similar in
form and the only difference is in physical
interpretation. In the present (spatial) model
the means are to be interpreted as height-
means with equal weighting for equal height
difference. In the alternative (pressure) model
they are to be interpreted as pressure-means.
It may be that something between these
extremes gives best results in practice or alter-
natively suitable weighting factors (relative
to either interpretation) may be developed
:;t‘if)irically. In the subsequent analysis it

ill be assumed that we are using a spatial
vertical coordinate.

Another approximation will now be made.
In equation (4) we shall suppose that in most
regions |curly v| may be neglected in com-
parison with f so that:

dv. d
fa_i‘=&"t (f+eurlyv).......

and in fact the whole of the

This is certainly not true in the vicinity of a
“jet” and the relative error may also be large
near intense depressions or anticyclones. In
Fcnetal the errors are larger at high than at

ow levels. However, for motion on a large
3203045
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scale we may expect to find the approximation
not too bad in most regions. From the practical
point of view the scriousness of the error
depends on the extent to which it can be
compensated for by the introduction of
(readily computed) “weighting factors”. Here
we may note that the error may be regarded
as associated with incorrect “weighting” of
Iz
that the appropriate weighting of other
quantitics is to some extent uncertain due to
the incompatible requirements for simplicity
of the thermal wind and continuity relation-
ships. Moreover we shall subsequently need
to adopt a rather crude and schematic distribu-
tion for v, since our data are insufficient to
determine its true variation. The total effect
of all such errors cannot easily be estimated a
priori. Hence the method will be to develop
the simplest possible system of equations as a
basis for experiment and subsequent critical
re-examination.

The stream functions ¥ and @ are defined
as mean values over a certain depth of atmos-
phere, the boundaries of which will be taken
to be +2, —z, Thus —z, corresponds
to the surface of the earth and + 2, the
effective “top” of the atmosphere. In fact, of
course, there is no top to the atmosphere but
there is some synoptic and also theoretical
evidence (based on perturbation theory —
cf. EADY 1949) that large scale disturbances
are mainly confined to the troposphere and
extend only a short distance into the strato-
sphere. Hence the effective depth 22, will be
supposed to correspond to a little more than
the height of the tropopause but once again
some modification may be desirable in con-
junction with the use of weighting factors.
2, is not a constant in fact but unless a simple
approximate relation to the ¥ and @ ﬁc{,ds
can be found it may be necessary to use a
mean value independent of the field of motion.
This mean value certainly decreases slowly
with latitude but the exact effect of this
variation will not be included in the present
analysis. The effective depth also ~ varies
because of unevenness of the earth’s surface
and it is known that this is responsible for the
existence of orographic stationary long waves.
Since this particular variation of z, is well
defined bclgrehand it is easy to include its

in respect to height. Now we have seen
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effects in the equations but for simplicity
this modification will be omitted in the ﬂres-
ent treatment. Then if we suppose both
the base and “top” of the effective part of
the atmosphere as substantially flat we may
take the boundary conditions to be v, = o at
z=4 2z, Integrating (5) with respect to z
between these %imits:
+ 2o

o=f§-t(f+curlgv)dz RN ();

— 2y

By definition the velocity field in the model

at any level 2 is:

g 22 30
B
W e 7
= % z, Ix

approximately. This field of motion is strictly
non-divergent but a good. enough approxi-
mation for all purposes except the direct cal-
culation of divergence. In high latitudes ¥
and @ are very ncarly constant multiples
of the mean pressure and temperature fields
respectively, consistent with the geostrophic
approximation and the relatively small value

¢4
of 3

In low latitudes ¥ and @ are better deter-
mined directly from the wind data. Some
slight adjustments will in practice be needed
to fit the data in middle latitudes and obtain
the best ¥ and @ representation.

‘Writing:
yo o ¥
Xs ay’ Ya ax:
oD I
a = T3S TS e i 8
v 3}' vY ax ()
and also:

Co=curlpre="V 3 ¥ {1 = curlyy, =7 1P (9)
we have on substituting in (6):

+ 2
d
o =f{(u,,-|—;z;uy,) 3—'-;+ [(v,, + %v,,)aix-}-

—2y

a2 3
+ ("y. + ;z;"yx) 9_7 + 5] (Co + '5; C1>}d2 (10)
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+z
where the contribution from f vy ‘;—ﬁ dz

—2Z

has been neglected. Perturbation theory sug-
gests that the contribution from this term is
small, compared with that of the remaining
terms, when the Richardson number is large,
as may be verified by substituting the true
values of the velocities corresponding to the
development of a baroclinic wave (see Eapy
1949). We shall tentatively assume that the
contribution from this term cotresponding to
vertical advection of vorticity may be neglect-
ed, in more gcncral conditions, over most
of the region concerned. The integrand in
(10) is, so far as variation with 2 is concern-
ed, a quadratic form and odd powers of z
integrate to zero. Hence we obtain:

2

d d 7
Vy.j)‘{‘f‘ ("x.;; +‘Vy.5}" + 5:) Lo+

1 2 J
+—(vx,§;+ v,,§5'>61=o cevs (x1)

3

and if we write:

D p P a2
'I—);z(vx.a-jc-f-—vy';)-’-l—é}) . (12)

corresponding to Langrangian differentiation
following the mean motion, then

D P2 P9
o+t == (Ea—57) ©

The term on the right hand side may be
called the development term. It represents the
change in absolute vorticity ofP a vertical
column moving with the mean motion (but
not of course consisting always of the same air
articles) and expresses the difference between
aroclinic motion and the motion of an
“equivalent” barotropic model. We shall use
the notation:

dAIB JAIB\ J(AB) _
5% =6y =B e

for the Jacobian of any two quantities 4, B,
with respect to x, y. Then for computational
purposes (13) is conveniently written:
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v, (Z)-4Z

2
) dy ax {W’VH W} +

-

%{(D,v 2 g

This gives one of the required equations,

relating %%, to ¥ and @. We now need an

equation to determine ? . Now from the

geostrophic relations:

a4
a’ . (16)

where ¢ is the logarithm of potential tem-
perature, we obtain on comparison with (7):

@ 8% Ip . (17)

9P _ gz I, g%0 I
ay [ o’

ax ~ f ax’

L]
2y

f

i latitude and remember that ¢ is a function
|
|

If we ignore the slow variation of = with

of (x, y, z) whereas @=® (x, y) by definition,
then

where @ denotes a2 mean with respect to z.
'~ Since @ varies also with 2 we shall write:

f d+Bx...

<P=7?7+Bz=gz (19)

; where B = g—g is the mean static stability. The
| relative variations of B are not usually very

large and they will be ignored in subsequent
alculations. From (19) it follows, if we

ignore the slow variation of = that:
o

|
;’ @——I—Pg-{—Bv, ...... (20)

’ If for the present we suppose the adiabatic
! approximation -to be sufficiently accurate we

have:
f D&

O=g—z;—'5t—+BUz
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and the change in @ is apparently a function
of 2. However, our model is incapable of re
resenting variation of this kind and all we
require is an estimate of the mean change.
Integrating between — 2, and + z, we get:
+
Do ¢B
Dt 2f

which would be the required equation if we
could express the mean value o(% v, in terms
of @ and ¥.

To do this we once again integrate equation
§5) but instead of adding the contributions
rom each half of the atmosphere (z = —z, to
z=0 and z=0 to z=+z,) we subtract
them. Then if v, (0) is the vertical velocity
at the middle level:

() + 2o

2f v. (o) =_f—f{(vy.,+§;v,‘) % +

[{=s %) 3
+ ”x.+zo”x1 a—x'_+

z 7 3
+<Vy.+z_0"yn)§;+’a‘t (Co +§;51)}dz (23)

if once again the vertical advection of vorticity
is neglected. On evaluation the even powers
of z mtegrate to zero and wé obtain:

2f __df J J
_z_vz(o) —”y:"i; + (v'“ja.c + Vn 97,) fo+

0

, P PR
T(Vx.gc-l-vy.;}-f-é}) &y - (24)

There is, of course, no necessary relation
bétween the mean value of v, and the value of
vz (0). However, with large scale disturbances
we may expect to find that v, is rather simply
distributed with, in most regions, the same sign
for all 2, a simple maximum near the middle
level (z=0) and of course zero values at z=
=2,. The simplest distribution which satisfies
these requirements is the parabolic one in
which v, oc(zy— z) (2o +2). Then we have:
+ 2z
1

2Z°
-—2s
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As a check we may note that the theoretical
distribution for a growing baroclinic disturb-
ance (EADY 1949) does not differ very greatly
from this assumed distribution. The principal
crror arises from the fact that our model is
not able to represent the (com aratively
small) 1phase change of v, with height: in this
example we know that the distribution of v,
with z is not independent of x,y. However,
this feature is associated with the fact that the
disturbance is rapidly intensifying and it
may be less marked in average conditions.
We may note that an error of the same kind is
involved in the assumption of constant ther-
mal wind: in a growing disturbance there is a
(comparatively small) ~ phase change with
height in the g-field.

From (25) and (24) we obtain an expression
for the mean vertical velocity. Substitution in
(22) gives:

f_l@‘.'ﬂ[ I 2,,9
=3 2y vady+ Vx:3x+vﬁay)co+

2 P a
+(Vx.5,‘c+”r-a—y+§t) 51].- (26)

If, as in equation (1), we write b = g—-?, which
as we have seen is a pure number to be inter-
preted as the square of the horizontal-vertical
scale factor, then (26) may be written:

3 D@ D_ df 9P
b—z':ﬁ—ﬁvﬁq—“-}-——— {@,V;‘I’}(w)

dy Jx

where the notation of (14) has been used for
the Jacobian. For computational purposes this
result is conveniently rewritten:

(_3___v “) (29) _dl‘?g
b2 VH)\at) dyox

{W,v; ¢} — % {sp, q>} .. (29)

o0, %)+
+

We now have a pair of equations (15) and
. ¥ P .

(28) for determing > and > The right-

hand sides of these €quations are known func-

tions so that to determine > we have a
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L
at

determined by a Helmholtz equation. The
f— in the Helmholtz

Poisson differential equation while

sign of the constant -~

20
equation is such as to ensure 2 unique readily
computed solution. To solve the equations
we need to apply suitable boundary conditions.
If ¥ and @ are given over the whole of the
carth’s surface this is a simple matter. The
2¥ P

boundary” condition is that = and =

must not have singularities anywhere and this
determines the functions uniquely. If the
data are given over a hemisphere we may
suppose that both functions vanish on the
equator. With data over more limited regions
the appropriate boundary conditions are less
obvious and this question will be discussed ina
subsequent paper. We may note that the
cquations (1s) and (28) arc casily adapted to
computations over a spherical surface. Wheth-

er it is necessary or convenient to do this is

another question the discussion of which is
postponeg.

In the above account we have neglected
two features which in the long run must play
an important part in determining atmospheric
motion — surface frictional drag and influx
and efflux of heat through radiation and con-
vection from the earth’s surface. Formally it is
a simple matter to include both these features
in the model. For cxample if (to make 2
crude estimate) we suppose the surface stress
proportional to and in the direction opposite
to the geostrophic wind at z= — Z,, then the
torque acting on the column of air above wil

be proportional to the curl of the wind field

at z=—2z2gi.¢e. “JV,; (¥ —@). This torque

measures an additional rate of change of the
vorticity of the column and we have only
to add this term to the ri
to represent the effect of friction. The cffects
of heating and cooling are expressed by adding
Q, the rate of change of ¢ due to non-adia-
batic heating or cooling, to the left-hand side
of (21). Proceeding in the same way as before

we obtain an additional term, 3L Q where Q
Bz,

is the mean value of Q averaged with respect to
2, on the right-hand side of (28). Of course,

t-hand side of (15)
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in order to apply this result we must have
some simple means of estimating Q when
¥ and @ are given.

Perhaps the best test of the formulac would
be a prolljonged series of experimental calcula-
tions for comparison with observed behaviour.
Alternatively we may test the model for types
of motion where the 3-dimensional solutions
are known. We have already made some
comparisons with the results of perturbation
theory. A more elaborate test may be made
by secing to what extent some of the quan-
dtative results of perturbation theory are
reproduced by the model. Undisturbed hori-
zontal baroclinic flow may be represented by a

mean flow U= — (‘?7—?,) and a thermal wind
[1]

T=— (%—?) where U and T are constants.
0

If now we superpose a small perturbation
represented by stream functions ¥, and @,,
we obtain, on substituting in (15) and (28)
and picking out the first order terms, the
perturbation equations:

(02 N L 2
0—(Uax+5t)vHW1+z)77xW1+

1 7
+§ Ta_xv;dil ....... (29)
and:
—(v2 12\ (vr—3 o 42
o _(U9x+(7t) (VH_E)¢‘+3 Pl
J 3
+T97c(v’:+b_zf,>gjl ... (30)

Corresponding to the assumptions made in
the 3-dimensional theory (EADY 1049) we
suppose. that y'b 2, = H and 7, may be taken
as effectively constant. Then the simultaneous
equations (29) and (30) evidently have solu-
tions of the form:

Y’x=Eel(‘x+M+m' tAx+puy+01)

: & =Fe (31)

where E, F, A, u, # are constants. Equations
(20) and (30) will be satisfied if:

(Us—U,) E+§TF=0
[Uo (1 + X)—U] F+T(1—X) E=o0(32)

where we have written:
U,=U+ %9; =TT Q;

X= 3 = 3 .
@ T () b

Eliminating E/F from equations (32):

(1 + X) (%‘:’)2——(24—}() (%5") 41—

T3
T (i1—X)=o0 ...... (34)
whence:
/ 4 T2
g 417 32
Uw—(z-}—X)i \/X +3U3(I X2

The boundary conditions in the horizontal
directions require that both 1 and x should be
real. Hence X and (—g
and positive. The disturbances will be un-
stable if, and only if, & is complex, i.e. if

are necessarily real

U,
is therefore:

is complex. The condition for instability

(1—X9) <o ... (30)

472
X=+§—'2

Now X is a number proportional to the ratio

of the “effective” wavelength —-—2—”—2 to the

“dynamic depth” 2H. There will be instability

for some wavelengths if (rearranging (36))
Ur _(HAf\ 41 X

XEiTE (3 T dy < 3 X3 % (7)

for any value of (A2 +42), i. e. for any positive
X. The maximum value of the right-hand
side is 1/3 (when X2?=2). Hence the condi-
tion for instability of the initial flow is:

H df
T dy

’<\/§
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The condition may also be written in the

form:
1 zdf
V3 f dy

where s is the slope of the (unperturbed) isen-
tropic surfaces. This result is of considerable
interest, though it has yet to be checked by
three-dimensional calculations. The corre-
sponding wavelength for the disturbances
which first become unstable as T is increased is

given by X=\2. Eliminating H? we obtain

~[4)>

1 df ”é. o
z}'—{mz}—\/g’ T..... (4)

and this result may be compared with the
stability criterion discovered by CHARNEY
(1947).

The simplicity of the above calculations
illustrates tﬁc power of the 2 14-dimensional
model. As a more precise test of its accuracy

we shall consider the case when j—— is neglected.
Then U,= 0 and in place of (34) we have:

,__T’ I—
U = 3 (1+X

.......

In this case there always exist unstable waves,
as is evident also from (38). The condition to
be satisfied is that X > 1 or:

Vb z, = :

1.732

1 x
VT 37 3

This compares with the true value:

Vb z, (42)

I
VA 4 ut

(EADY 1949 p. 39). The only error is in the
numerical factor and this is clearly of a kind
which could be climinated by modifying the
constants in the equations (15) and (2!5

It is easily verified that the disturbance of
maximum growth rate (maximum imaginary
part of §) corresponds to =0 and maximum

2
X From (41) we find that X= 1+ V2

gives the corresponding wavelength so that:

1 —
>I.1997-\/bzo......

e (43)

E. T. EADY

/ PO I -
\r\;l; \/2' Vb 2= 1.II§ Vbzg (44)

ol

as compared with the true value:

=z,

0.8031 )

I

): = e e e (45)
The corresponding value of # is furcly imag-
inary as i the accurate calculations. The
numerical magnitude deduced from (44) and
(41) is: :

- T T
Pl={2— . —— 2~ Q. —
[#|=(V2—1) N 0.4142 N

as compared with the true value:

(46)

T
?’ =0, 8 = I T T I PRI R
|91 =03098 = ” (47)
The value of 1:- computed for the model is: |
19‘ I
i_=f~.—————-T:o372T ..... (48)
MoviVi+ vz

which compares favourably with the true
value:

‘il=0.3858T

The above is probably a fairly severe test of
the model. For comparison we may note that
the assumption that temperature is horizon-
tally advected (neglect of vertical motion)
leads to values of [#F which are very much too
large for the short wave-lengths — in fact
there is no minimum wave-length for instability.
For very long waves the effect of vertical
motion is much less but on the other hand it is
Ereciscly in these conditions that an equivalent
arotropic model can be constructed to repro-
duce the behaviour of the mean flow with
some degree of accuracy. |
The writer would like to express his thanks
to Professor C.-G. Rossby and members of |
Institutet f5r Meteorologi, Stockholm, for
lively and constructive criticism, during a
recent visit, of the ideas presented here.
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