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ABSTRACT

A study is made of the hydrostatic and quasi-geostrophic motion of two superimposed layers of homo-
geneous and incompressible fluids of different densities, these fluids being contained between two rigid,
horizontal plates. It is found that the local time derivatives of the pressure heights in the two layers and
the height of their interface can be determined from partial differential equations similar to those developed
by Charney for the equivalent-barotropic model.

The possibility of using this two-layer model to represent motions of a continuously stratified, baroclinic
troposphere is explored by comparing the behavior of small perturbations superimposed on a zonal current
in the two-layer model with the results of the continuous baroclinic perturbation theories of Eady and
Fjgrtoft. The remarkable similarity of behavior of the two-layer and the continuous perturbation models,
which appears from this comparison, suggests that if the initial flow patterns of the two-layer model are
determined from the initial flow patterns of the troposphere in a specified manner the later flow patterns
in the troposphere can be inferred from the forecast flow patterns of the two-layer model.

This hypothesis is subjected to a preliminary test by computing the instantaneous sea-level pressure
tendencies and vertical motions (in the middle troposphere) at the beginning of the severe storm of 24-25
November 1950 over eastern North America. The order of magnitude of the predicted quantities and their
general distribution agree in many respects with the observed pressure changes and hydrometeors, but some
disagreement exists. It is suggested that a part of this disagreement may be due to the effect of large normal
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accelerations on the validity of the quasi-geostrophic assumption,

/

1. Introduction

Many informative theoretical studies of the beha-
vior of the large-scale flow patterns in extratropical
latitudes have been made in the past decade.? A large
number of these, beginning with the classical investi-
gation by Rossby and collaborators [16], have taken
cognizance of the fact that the “‘depth’ of the atmos-
phere is much smaller than the horizontal scale of the
large disturbances, and have treated the flow as two-
dimensional and non-divergent. More recently, Char-
ney [4] has demonstrated that the mean flow (mean
with respect to pressure) can be described adequately
in this manner when certain conditions are satisfied
(the *‘equivalent barotropic’”’ atmosphere). This has
formed the basis for the partially successful 24-hr
forecasts of the 500-mb flow pattern, which he and his
co-workers have recently made by performing a numer-
ical integration of the non-linear vorticity equation [6].

Although the non-divergent vorticity equation and
the quasi-geostrophic assumption [3; 87 thus seem to
provide a reasonably satisfactory method of forecast-
ing the mean flow pattern, an adequate forecast of
“weather,” including precipitation, cloudiness and
surface wind velocities, can be achieved only when

1 This paper is published as a contribution to a research project
on the general circulation of the atmosphere, sponsored by the
Office of Naval Research.

2 Present affiliation: Institute for Advanced Study.

3 A unified treatment of some of these studies has recently
been made by Fjgrtoft [10]. ) :

the distribution of vertical motion and the ‘‘sea-level”
pressure distribution are known. The equivalent baro-
tropic atmosphere is patently incapable of providing
this information, at least in the detail which is re-
quired. It is therefore necessary, as is recognized by
Charney and his collaborators, to extend numerical
forecasting techniques to atmospheric models which
will permit the forecasting of vertical motion and the
surface pressure field. The importance of baroclinicity
in this respect has been emphasized by Sutcliffe [20].

Charney [4] has derived simplified equations which
apply to the more general baroclinic case. They con-
sist of the equation expressing the conservation of the
vertical component of the absolute potential vorticity,
d 199

[-Zu+o]-0 o

p 0z

dt
and the hydrostatic equation,

ap/az = — pf, (2)

together with the assumption that the substantial de-
rivative d/dt and the relative vorticity ¢ are evaluated
geostrophically. (p = density, ¢ = potential tempera-
ture, f = Coriolis parameter, p = pressure and g =
acceleration of gravity.) These equations can be re-
duced to a single partial differential equation, in the
three independent variables x, y and 2, for the pressure
tendency dp/dt. This equation can then be solved
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Fic. 1. Vertical cross section through two-layer model
with rigid top.

numerically for dp/d¢ by an extension of the method
used for the two-dimensional barotropic model [6].
Although (1) and (2), together with the quasi-
geostrophic assumption, represent a drastic simplifi-
cation of the complete hydrodynamic equations as we
know them, they may still include rather complicated
motions when applied directly to the atmosphere. It
may therefore be of some advantage to consider first
a simple baroclinic model which obeys the same laws
as those expressed in (1) and (2) but is simpler in its
physical construction than is the actual atmosphere
and therefore more easily understood. It is the pur-
pose of this paper to construct such a model and to
test its validity by applying it to an actual situation.

2. Description of the model

Probably the simplest model which contains some
of the essential features of the baroclinic atmosphere
is the following ‘‘two-layer’’ model. We consider two
fluids, each homogeneous and incompressible, with
densities p’ and p (o’ < p). They are contained be-
tween two rigid, horizontal plates, which are separated
a distance H. The heavier fluid has a depth % and lies
below the lighter fluid (fig. 1). % is a function of time ¢
and the horizontal coordinates x and y. The potential
vorticity equations for this model then take the form

. d d !
L o L o
dt h dt \H — h

with the primed quantities referring to the lighter
fluid. These equations contain implicitly the mass
continuity equation and the kinematic boundary con-
ditions at 2 = 0, 2 = h and 2 = H. They also contain
the assumption that the horizontal velocity in each
fluid is independent of height, which in turn is based
on hydrostatic balance and barotropy within each
fluid.

Although the pressure p’ at the upper rigid bound-
ary cannot be ‘“hydrostatic” in the sense that it is
balanced by the weight of a column of air above it,
and must be thought of as being balanced by a reac-
tion of the rigid top, the presence of the rigid top does
not affect the hydrostatic equation within the fluid,
at least for- the scale of motions in which we  are
interested. Before we write the hydrostatic equation,
however, it will be convenient to define two variables
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z’ and 3z,

2 =p"/o's, 2= po/ng

where p, is the pressure at the bottom. Apart from
irrelevant constants, z’ and z may be thought of as
being the height of certain pressure surfaces in the
upper and lower fluids. If we also define e = p'/p < 1,

the hydrostatic equation takes the form
z = e’ + (1 — e)h + constant. 4)

Following the procedure outlined in principle by
Charney, we now evaluate the vorticity equations (3)
geostrophically. With {" = f~g V¥2’ and { = f~lg Vg,
they reduce to

9 oh
V2—j+fv-Vn — fﬁ- (5 + v~Vh) =0, (5)

9z’ f bi% oh
V:i—+ =0V Vy + (— + v’-Vh) =0, (6)
a g g(H — k) \ ot
where the horizontal velocities v and v’, and the abso-
lute vorticities n and #’, are understood to be evaluated
geostrophically.

Equation (4) may then be used to eliminate 93/9¢
and 9z’/dt, so that the following equation in d%/d¢
results (note that ev’-Vh = v- Vh, geostrophically):

v ey gy = 0 )
— — a\x, - ) = ]
ot Y dt ey
where f ,
7 7
) = ——— | e |, 8
@) (1——e)g[h+6H—h] ®
and ’
, - Vn — 8 v
q(x, v) R [U Vn — v’ -Vy

" n’
-+ — v-Vh}- 9
(k H—-h ®
The behavior of the model is then computed in the
following manner:
1. The functions a(x,y) and g(x, y) are evaluated geo-

strophically from the initial distribution of 2’, z and &
(for example, at the points of a rectangular grid).

2. dh/dt is determined by solving (7) numerically, using
finite differences and assuming 3%/d¢ to be zero at the

gt

(A) (B)

F16. 2. Schematic diagram illustrating restraining influence of
springs which must be added to elastic-net analogue of geo-
strophic vorticity equation when divergence and convergence are
important.
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lateral boundaries (which must then be sufficiently far re-
moved from the region of interest).

3. 0h/3t is substituted in (5), which is solved numerically

as a finite-difference ‘“‘Poisson’’ differential equation for
3z/at.

4. The other unknown tendency, 9z'/d¢, is determined
from (4) at each point, with use of the values of 9k/d¢
and 9z/3t already obtained.

5. The initial values of 2’, z and & are then extrapolated
in time with use of the tendencies which have been calcu-
lated above.t The entire procedure is then repeated.

Charney [4] has used the mechanical analogue of
a loaded elastic net to illustrate qualitatively the
properties of the simple Poisson type of differential
equation for the mean height tendency 90z/9t, which
is used in the equivalent-barotropic model,

The known function g~'fv-Vy can be considered as
equivalent to a distribution of external forces ¢(x, ¥)
(e.g., weights or gas-filled balloons) acting vertically
at the points of the elastic net (fig. 2, A), the neutral
position of the net being horizontal (¢ = 0). The tend-
ency 0%/d¢ is then analogous to that vertical displace-
ment ¢ of the net which results when the external
forces o(x,y) are balanced by the elastic restoring
forces of the net (the latter being proportional to V2£).
The gross features of the field of 93/8¢ can thus be
inferred from the gross distribution of the vorticity
advection in the non-divergent model by considering
the equivalent loading of the elastic net. A similar
interpretation can also be given to the equation for
dh/at, which differs from a Poisson equation by the
added term —a(x, v) dk/0t. If a(x, y) is positive—the
ordinary case—this modifies the analogue in the fol-
lowing manner. To each point of the net we attach one
end of a linear spring, attaching the other end of the
spring to a rigid support, the neutral position of the
spring being ¢ = 0 (fig. 2, B). The ‘“‘compliance” of
each spring should be proportional to the correspond-
ing value of a(x,y) at that point. It is clear from
this analogue that the term —a(x, v) 9k/d¢ has a
“damping’’ effect when a(x, y) > 0.

The role of the term —a(x, y) dk/9¢ can also be seen
by the following reasoning. For convenience, assume
that v-Vh = 0 (this is not essential to the argu-
ment) and that ¢(x, ¥) is positive. For example, con-
sider v-Vy and ev’-Vy' both negative (wind blowing
from high to low values of absolute vorticity), but
lev’-Vy'| > |v-Vg]|. (Such a situation might exist to
the east of a “‘cold” baroclinic trough.) In terms of

4 The conditions under which this extrapolation is “‘computa-
tionally stable” for the non-divergent model are discussed by
Charney and others [6]. Similar restrictions undoubtedly apply
to the model described above and will place an upper limit to
the length of the time step which can be used for each successive
time extrapolation.
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. F1G. 3. Schematic cross section showing deformation (dashed
ling) of interface caused by greater advection of absolute vor-
ticity in upper than in lower fluid.

the mechanical analogue, this corresponds to a positive
force o{x, ¥), i.e., a gas-filled balloon is attached to the
point of the net under consideration.

As a first approximation, assume that the flow in
each layer is non-divergent. The fact that e'-Vy' is
more negative than v:-Vy would then imply that the
local relative vorticity increase is greater in the top
layer than in the bottom layer. For hydrostatic
and geostrophic balance, this would require the in-
ternal boundary to be deformed as indicated by the
dashed line in fig. 3, so that V2(92/9t) < V2(d3'/at).
In turn, this must in general involve a tendency to
raise % at the point in question, since we are not
perfectly free to depress % arbitrarily in the surround-
ings. This lifting of the internal surface corresponds
to convergence in the lower fluid and divergence in
the upper fluid, whick tends to counteract the initial
disparity in v-Vy and ev’-Vy', and thus to reduce the
magnitude of V2(9k/dt) and 9k/at.

The equation for 0h/dt expresses the fact that a
balance is reached between (a) the vertical motions
(in addition to horizontal advection) necessary to
make the pressure changes predicted from the quasi-
geostrophic vorticity equations hydrostatically con-
sistent, and (b) the simultaneous modification by these
vertical motions of the pressure changes predicted
from the quasi-geostrophic vorticity equations. This
modification occurs via the divergence term in the
vorticity equations.

The general nature of (7), with the vertical varia-
tion in horizontal advection of vorticity playing a
prominent role, agrees well with the description of
large-scale motions first proposed by Sutcliffe {20]
and later modified by Sumner [197].

3. Comparison of model and continuous atmosphere

[f this simple two-layer model is to be of any value
in studying the behavior of flow patterns in the atmos-
phere, some method must be found to transform a
given initial state of the atmosphere into an equivalent
state of the model. Furthermore, after the model has
developed for some time according to the method
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outlined above, it must be possible to invert this
transformation and obtain a forecast of the state of
the atmosphere at this later time. In hydrodynamic
laboratory experiments with physical models which
are geometrically similar to the “‘prototype,” this
is accomplished by making certain non-dimensional
numbers equal in the model and prototype. (For
instance, in a problem of the type we are investi-
gating, two such numbers would undoubtedly be a
Richardson number, gs(dU/dz)~2, and a Frcude num-
ber, U*(gsH?)™, where.s = vertical stability.) This is
based on the fact that when the same types of forces
act on the prototype and the geometrically similar
model, and the differential equations and boundary
conditions applicable to each of them are written in a
non-dimensional form, these differential equations and
boundary conditions will be identical when the bound-
aries are geometrically similar and the non-dimensional

_constant parameters, which appear as coefficients in
the equations, are equal for model and prototype.

In our problem this most direct procedure is not
possible, because the two-layer model is not geomet-
rically similar to the atmospheric prototype. This lack
of geometric similarity is a result of the fact that the
continuous atmosphere has an infinite number of
degrees of freedom, so to speak, in the vertical coordi-
nate, while the two-layer model has only two such
degrees of freedom, represented by sz and z’. It is there-
fore clear that we cannot expect the two-layer model
to simulate those motions of a continuous atmosphere
which require many parameters to specify their dis-
tribution in the vertical. Fortunately, aerological evi-
dence [11;14] shows that the variation with height
of the large-scale flow patterns of interest to us is
rather simple. Thus, approximately, the wvertical
velocity-component (w) associated with these motions
is zero at the ground, reaches a maximum value
approximately half way between the ground and
tropopause, and becomes small again in the vicinity
of the tropopause. If we restrict our consideration to
motions of the atmosphere which not only obey (1)
and (2) but are also characterized by a simple varia-
tion with height, consistent with the distribution of
vertical velocity just described, it might be possible
to rewrite (1) and (2) so that they become formally
similar to (3) and (4). (This procedure would be an
extension of what Charney has done in defining the
equivalent-barotropic model.) If these modified equa-
tions were then compared with the corresponding equa-
tions for the two-layer model, one would supposedly
obtain a set of conditions under which the subsequent
motions of the two-layer model and the “restricted”
atmosphere would be geometrically similar. These
conditions could be considered as defining equivalent
Froude and Richardson numbers, efc., or else as simply
defining values of v, v/, ¢, 2 and H of the two-layer

METEOROLOGY VoLuME 8
pL,u
W\\
North South

F16. 4. Meridional cross section through basic current considered
in study of linearized behavior of two-layer model.

model in-terms of the variables and parameters of the
atmosphere.

A less direct method is carried out below. The
behavior of a continuous baroclinic model -with a rigid
top is compared with that of the two-layer model with
a rigid top, for small disturbances satisfying (1) and
(2) or (3) and (4), these disturbances being super-
imposed on a basic, baroclinic zonal flow. Only dis-
turbances of the continuous baroclinic model which -
have a distribution of w similar to that described above
are considered. Application of conventional pertur-
bation analysis to these two systems vyields frequency
equations which predict the behavior of the super-
imposed perturbations. If geometrically similar per-
turbations (z.e., perturbations having the same wave-
length) are to behave similarly in each system, it turns
out that the basic flow pattern in the two-layer model
must be determined from that of the continuous model
in a certain manner. (By similar behavior of pertur-
bations of equal wavelength in the two-layer and
continuous models, we mean that the speed of propa-
gation and instability properties of the waves are the
same.) The hypothesis is then made that if an initial
non-linear flow pattern for the two-layer model is
determined in an analogous manner from an initial
non-linear flow pattern in the atmosphere, the relations
between the flow patterns of the two-layer model and
the pertinent patterns in the atmosphere remain the
same for all later time; in other words, the systems are
dynamically similar in this sense.

The above hypothesis involves a tacit assumption
that the continuous baroclinic mode! with a rigid top
is a satisfactory approximation to the actual atmos-
phere. One obvious difficulty here is the lack of. a
stratosphere in the continuous baroclinic model (or
the two-layer model) that is considered. Otherwise,
the properties of the disturbances in the continuous
baroclinic model, as they have been discussed by Eady
[7], Fjgrtoft [9] and Charney [2], agree quite well
with typical developments as seen on surface and
upper-air charts.

Equations (3) and (4) will therefore be applied, in
their linearized form, to the basic current system
illustrated in fig. 4. The zonal velocities U and U’
are independent of y (latitude), and the Coriolis
parameter f will be set equal to fo + By, where it is
to be differentiated with respect to v, but will be
considered constant (fy) when it appears in undiffer-
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entiated form. (8 = 2wR™! cos ¢y, where w is the angu-
lar velocity of the earth, ¢ the central latitude, and
R the radius of the earth.) The undisturbed basic-
current system must be in hydrostatic and geostrophic
equilibrium, so that the {ollowing relation (Margules’
formula, or thermal wind equation) exists between
U', U and the slope dk/dy of the undisturbed interface:
U=eU — (1 — ¢(¢/fo) dh/dy. (10)

It is convenient and sufficient for our purposes to
restrict our considerations to perturbations which are
not a function of latitude. We can then put ¢’ = 0v’/dx
and ¢ = 9v/dx, where 2’ and v are the perturbation
meridional velocity-components in the upper and lower
fluids, respectively. If the perturbation quantities are
put proportional to exp [k(x — ¢f)], where B = 27L!
is the wave number and ¢ the phase speed of the wave
perturbation, the following linearized forms of the

potential vorticity equations (3) are readily obtained:

[— (U -~k + B8
fo

L o )66 dh -0 1"
D[ C£+v@]' -

[— (U — ok + ]
i[(U’—c)?—a+v’%]=0 (12)
D dx dy '
Here 8(x, £) is the perturbation of the internal discon-
tinuity surface, and a constant height D has been
written in place of the semi-constant heights # and
H — h. The mean values of & and H — % have then
been taken to be equal. This is not only a convenient
choice, but seems most consistent with the kinematics
of the large-scale disturbances we are trying to imitate.
We may now introduce the hydrostatic and quasi-
geostrophic assumptions for the perturbations by using

the thermal wind equation to evaluate 35/dx in terms
of ¥/ and v. We find

(fo/D) 88/9x = (v — ev')A?, (13)

where A%, having the same dimensions as k?, has been

+

¢ =201 +eala+ 1+ ¢!
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written in place of f?/[(1 — €)gD]. The following
two simultaneous equations in v and o’ then result
when (13) is substituted in (11) and (12):

[~ (U — & + ) + 8 ~%j—;’]y

+ (U — ¢)v = 0,
MU — ¢)v

!
e

+[ (U = O + ) + 5+ 2 dh] '
—_— —C —_—— =
€ D d ]

dh/dy can, of course, be eliminated by (10). If ¥’ and v
are not to vanish identically, the determinant of their
coefficients must vanish. This gives us the frequency
equation for the speed of propagation of the small
perturbations which satisfy the linearized equations.
It is a quadratic equation for ¢ and has a solution
of the form ¢ = [~ b & (A)¥]/2a. If the discriminant
A is negative, ¢ is complex, which means that such
perturbations are proportional to exp [ k(— A)¥]
and will grow or decrease exponentially with time,
according to the choice of the plus or minus sign in
front of the radical.® Before discussion of the proper-
ties of the frequency equation, it will be convenient
to define two new velocities, U = (U + U’) and
U* = ¢/ — U. The non-dimensional parameter «,
defined by a = %%/A?, will also be useful.

When the quadratic equation is solved for
¢ (= ¢, & ¢;), we find that the part of the phase
velocity which is always real (c;) has the following
value:

_ 8 2a+ (1 + ¢ (1 —eU*

S 5 S — - (14
«=U B2a+2(1+¢ 2ala+1+4¢) (14

The part of the wave speed which may be imaginary
has the following value:

Ua{(1 — )2(1 + €)2 + 4a?[a® — (1 + 2]} + {2(1 - OUala + 14 ¢ — (1 4 )28\ 2]2
hed + 8e(1 — ) (1 + e)afa + 1 4+ eBUN? )
+2(1 — QU 22 — (1 + 2 ]{2a(e+ 14+ U — (1 + r28}. (15)

It is clear from this last expression that, although a
necessary condition for the radicand to be negative is
that U* 3 0 (if we consider 0 < e < 1 and U > 0),
the complete stability criterion depends on U*, U, 8,
A2, & and e.

The properties of the perturbations on the basic
state of the two-layer model will now be compared
with the properties of similar perturbations in a con-
tinuous baroclinic atmosphere with a rigid top, as they
have been studied by Eady [7] and Fjgrtoft [9].

5 It is not necessary to make the quasi-geostrophic assump-
tion (13). Since the perturbations are independent of latitude,
du/dx = divv = — DI[(U — ¢) 36/3x + vdh/dy]. 1f the x equa-
tion of motion is linearized, (U — ¢) ou/dx = — g dz/dx + fv.
These can be combined into an equation of the form lv + m 83/dx
= 9z/3x, and a similar equation, !'v’ + m’ 35/0x = € 2’/9x, can
be obtained for the upper fluid. (/, m, " and m’ are constants.)
The hydrostatic equation, z = ez’ + (1 — €)k + const, can then
be introduced to give an equation of the form 48/9x = Mv + Nv'.
This can be used in place of the quasi-geostrophic equation (13)
and leads finally to-a guartic frequency equation instead of the
guadratic equation for ¢ obtained above. However, since the non-
linear model uses the geostrophic assumption, it was not con-
sidered necessary or even advisable to use this refinement in
studying the perturbation behavior.
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Eady’s results are more convenient for this purpose.
He discusses in most detail the case where the effect
of the variability of the Coriolis parameter is neglected

(8 = 0), and his results for this case (with perturba-
tions independent of y) may be summiarized as follows:

1. Waves of a length shorter than a critical length are
neutral (¢ is real), while waves longer than this critical
length have complex values of ¢ and are therefore either
amplified or damped. This critical wavelength is a function
only of the Coriolis parameter f, the total depth (2D), and
the vertical stability [d(In#)/dz]. In terms of a critical
wave number k., he finds

= (1.1997f)2/[gD? a(In 9) /92 . (16)

2. There is a certain wavelength (kB < k;) which is most
unstable. If v; max (= klc:]) is the “time of flight' for this
most unstable wave,

%omnx? = (0.31fdU/dz)2/[go(in9)/oz]. an
3. The real part of the phase velocity has the value
= (U, + Uy), (18)

where U; and Uj are the zonal velocities at the top and
bottom of the continuous, baroclinic basic current, respec-
tively.

We must now see whether the perturbations in the
two-layer model have the same properties when 8 =
A study of the radicand in (15) immediately shows
that the stability criterion then depends on U and U*
in addition to the vertical stability, Coriolis param-
eter, depth and wave number (the latter quantities
being contained in «). It is convenient to divide the
radicand in (15) by U? and set the resulting expression
equal to zero, to investigate the form of the criterion.
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FiG. 5 Schematic illustration of stability criterion for two-
layer linearized model with 8 = 0. Heavy lines show two roots,
(+) and (=), of (19) as functxons of & (proportional to square
of wave number for fixed values of Coriolis parameter, density
ratio, gravity and depth). Dashed lines are asymptotic values
for large values of U*/U (U*/U being proportional to the ratio
of momentum shear to mean zonal wind in basic current).

METEOROLOGY

layer model with 8 =

VoLuME 8

For 8 = 0, this yields

(U*/ 0 {(1 —e*(1+e)*+-4a*[a® — (1 +€)2]}
+(U*/ D) {41 = )al 26>~ (1 +)*JLat1+¢€])
+{2(1 —e)alat+1+€]}2=0

as the critical condition. This equation is most con-
veniently studied as a quadratic equation in (U*/U)
whose coefficients are functions of @ and e. The two
roots of this equation are plotted schematically in
fig. 5, and the region of instability indicated thereon.
(The curves for U*/U < 0 are included for complete-
ness but are of no particular interest here.) The dashed
vertical asymptotes, @ = a; and « = ay, are the two
positive values of & for which the coefficient of (U*/U)?
in (19) vanishes, and are given approximately by
a; = 0.5(1 — ¢) and a2 = (1 + ¢€). This figure brings
out the fact that the stability criterion for the two-
0 is a function of (U*/U) as
well as «. Eady’s criterion (16), on the other hand,
involved only quantities similar to those contained in
our «, and his criterion would accordingly be repre-
sented by a single vertical line on fig. 5. Furthermore,
the stability region for small & (= £2/A%) is completely
absent in Eady’s model. These apparent discrepancies
must be resolved before we can assume that the two-
layer model will be a satisfactory approximation to
the continuous atmosphere, even in the linear case.
Fortunately, the source of these discrepancies is
easily determined:. In setting up the equations which
apply to their baroclinic models, Eady and Fjgrtoft
use the usual simplified form of the thermal wind
equation which results when the gradient of potential
temperature along an isobaric surface is replaced by
the horizontal gradient of potential temperature.
Equations (10) and (13), on the other hand, are exact
formulations of the thermal wind equation. If ¢eU” and
e’ are replaced by U’ and ¢’ in (10) and (13), respec-
tively, we introduce essentially the same simplification
as that used by Eady and Fjgrtoft. The value of ¢
obtained when this is done is much simpler than that
given by (14) and (15). We find, ultimately, '

c=U-(B/B[(1+a)/2+a)]
X[2a2+a) IV~ U)a(a® —4)+46°/N T8 (20)

This can be obtained directly from (14) and (15) by

replacing ¢ by 1 where it appears explicitly in those

equations, and by replacing U* = U’ — U with

— U.% For B = 0, the stability criterion is now

= 2 (a < 2 corresponding to amplified or damped
waves) and we then have, from the definition of «,

k2 = 2\ = 2f*/[g(1 — &D]. (2-layer) (21)

The value of o which corresponds to maximum in-
stability is easily determined and turns out to be

(19)

§ When the negative root is taken, this expression ‘“reduces to

Rossby's formula’ for U’ = U
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a = 2[(2)* — 1]. For this value of a, the time of
flight is given by

Vi nmx2 = 0086)\2([]! - U)2. (2-1ayer) (22)

Finally, we have the real part of the phase velocity
(still with 8 = 0):
¢ = U. (2-layer) (23)
We now require that the linearized two-layer model
have the same values of &2, 7;ma’ and ¢, as the con-
tinuous model of Eady. Equating (21) with (16), (22)
with (17), (23) with (18), and taking the total depth
(2D) to be the same, we find

(1 — ¢ = 0.695(3, — B)/3,
U — U = 0.626(U, — Uy),
U4+U=U+ U,

(24)

where the subscripts ¢ and 0 refer to values at the top
and bottom of the continuous model (which we will
interpret as the tropopause level and the surface of
the earth), respectively, and & is equal to (¢, + &).
When the two-layer model in fig. 4 has values of
(1 —¢), U’ and U determined according to (24), a
superimposed perturbation of an arbitrary wavelength
will behave quite similarly to a perturbation of the
same wavelength superimposed on a continuous, baro-
clinic zonal current with the same depth (2D) and a
zonal wind and vertical stability distribution given by
the quantities U,, Uy and (8, — &)/@. Strictly speak-
ing, we have determined this equivalence only when
the approximate form of the thermal wind equation is
valid, but there seems to be no reason why this ap-
proximation should destroy the equivalence when the
exact form of the thermal wind equation is used in the
two-layer model. Unfortunately, there does not appear
to be any study of these perturbations in a continuous
baroclinic current with rigid top in which the exact
form of the thermal wind equation is used.”

Having determined the conditions for dynamic simi-
larity without reference to the effect of a variable
Coriolis parameter, we must compare the two-layer
and continuous models in this respect. Eady does not
discuss in any detail the effect of 8 on the-stability
criterion, so we will compare our results with those of
Fjgreoft [9]. Fig. 6 contains a comparison of the
stability criteria for long waves for our two-layer
model, Fjgrtoft’s continuous incompressible model and
Charney’s continuous compressible model [27]. All the

7 The remarkable structural similarity between (21) and (16),
(22) and (17), and (23) and (18) suggests that a more exact
analysis of the quasi-geostrophic perturbation problem for the
continuous case with 8 = 0, using the exact thermal wind equa-
tion, might show a dependence of the stability criterion on the
relative values of U* and U, in analogy with the results contained
in (14) and (15). It should also be remarked that, although the
two-layer model can evidently be made dynamically similar to
a continuous baroclinic model as far as large-scale quasi-horizontal

flow patterns are concerned, this, of course, may not be possible
for other phenomena, e.g., “Helmholtz” waves.
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F1c. 6. Stability criteria for various quasi-geostrophic baro-
clinic models with 8 5 0. (C): Charney’s criterion; (F): Figrtoft's
criterion; (2): two-layer model with rigid top.

curves are based on a normal value of the vertical
stability (89/9z = 3.5C/km), a tropospheric depth of
about 10 km, and values of f and 8 appropriate to
45°N. The curve for the two-layer model was obtained
by setting the radicand in (20) equal to zero, and
using (24) to interpret (U’ — U) and (1 — ¢) in terms
of dU/dz and 89/dz for the continuous models. The
agreement between Fjgrtoft's curve and that for the
two-layer model suggests that (24) is approximately
correct also for the case when 8 > 0, and that the use
of (24) to obtain dynamic similarity with respect to
gravity and Coriolis forces will not interfere with the
requirements for dynamic similarity with respect to
the effects of 8.

The equivalence relations (24), in combination with
the - thermal wind equation, show that

dh/dy =~ 0.9(3z/3y)s, (25)

where (92/8y)s is the mean meridional slope of the
isentropic surfaces in the troposphere. It is therefore
clear that, when the relations (24) are used, the inter-
face h does not correspond to the conventional concept
of a “polar front,” but is the dynamic equivalent of
the mean solenoidal field in the troposphere.

We have established (24) as the equations which
define a two-layer model that will behave toward
small quasi-geostrophic perturbations in a manner
similar to the behavior of a continuous model toward
perturbations of the same wavelengths. We now make
the hypothesis that the same relations must hold for
similarity in a non-linear problem. If z, and 2, are the
heights of isobaric surfaces near the tropopause level
and the surface of the earth, respectively, this implies
that

(1 — ¢ = 0.695(8, — ¥/,
7z’ — z = 0.626(z, — ),
Z+2z=2z4+a, '

(26)

are the relations we must use to evaluate the terms
in (7) and (5). (We are interested only in the time and
space derivatives of z and 2/, so any additive constants
are arbitrary.) In practice, (¢, — 9)/d varies some-
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what, so we must take an average value that is appro-
priate for the region in which we are interested.

The distribution of % will be determined from (4),
after z and 2z’ have been computed from (26). The
constant in (4) is relevant, however, since % is used
to determine the potential vorticity. We will assume
that this constant is chosen so that the mean value of
k is equal to half the mean value of the height of the

%

ke
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3
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I

FiG. 7. 1000-mb chart for 1500 GCT 24 November 1950. Sea-
level pressures and 3-hr tendencies at 1830 GCT were used in
combination with 1000-mb heights reported on radiosonde obser-
vations at 1500 GCT to obtain chart. Isolines are height contours
in hundreds of feet above sea level.
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F1G. 8. 300-mb chart for 1500 GCT§24 November 1950. Isolines

are height contours at intervals of 200 ft.

VoLuMme 8

upper isobaric surface, z.e.,

ffhdxdy=%ffztdxdy.

This equation defines the constant in (4), so that % is
completely determined.

Finally, it is of some interest to compare the field of
vertical motion in the two-layer model with that in the
atmosphere. If we assume that the latter vertical mo-
tions can be represented by w = W(x, y, ¢) sin (w2z/H),
so that W is the (maximum) vertical velocity in the
middle of the troposphere (z = 1H), the vorticity
equations at z = 0 and 2 = H can be used to evaluate
dw/dz = — div v in terms of the individual changes of
vorticity at those levels in the troposphere. These
latter quantities, in turn, can be expressed in terms
of the vorticity changes in the two-layer model by
means of (26). One finds, finally, that

W = 2(0.626x)" dk/dt ~ dh/dt. (28)

This means that by means of (26) the two-layer
model has been chosen so that the values of the
divergence in the lower and upper layers are, respec-
tively, equal to the (vertical) mean values of the
divergence within the lower and upper half of the

troposphere—a result which increases, perhaps, the
credibility of (26).

27)

4. Application to a synoptic example

A preliminary test of the model has been made by
calculating the field of vertical motion and ‘“‘sea-level”’
pressure tendencies over eastern North America during
an early stage of the development of the severe storm
of 25 November 1950 in that region.® The initial

5 The history of this storm has been discussed by Smith [17].

120 1o
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F1G. 9. 1000-mb chart for 0630 GCT 25 November 1950.



DECEMBER 1951

NORMAN A.

PHILLIPS 389

F1G. 10. Isolines of 3’ at 200-ft intervals for 1500 GCT
24 November 1950.

situation chosen for study was that at 1500 GCT
24 November 1950. Figs. 7 and 8 are the 1000- and
300-mb charts, respectively, for this time and were
used to give the values of z and 2, in (26). The ensuing
surface development is shown by fig. 9, the 1000-mb
chart for 0630 GCT 25 November, 15 hr later than
the chart in fig. 7. The intensity of the vortex on the
300-mb chart in fig. 8 shows that this example is a
rather severe test of the model insofar as the quasi-
geostrophic assumption is concerned, since the strong
curvature of the contours must correspond to an appre-

Fia. 11. Isolines of z (solid lines) at 200-ft intervals and % (dashed
lines) at 2000-ft intervals for 1500 GCT 24 November 1950.

F1G. 12. 8h/dt (cm/sec) obtained from solution of (7) for
1500 GCT 24 November 1951.

ciable deviation of the actual wind from the geostrophic
value. Furthermore, the horizontal variation of the
mean vertical stability between the 1000- and 300-mb
levels [as expressed by (¥ — S0n)/F] was more
pronounced than normal, the vertical stability in the
center of the vortex being quite large.

The heavy line on the charts outlines the area over
which computations were made, and the grid that was
used to solve the finite-difference analogues of (7) and
(5) is also included in figs. 7 and 8. For simplicity,

Fi16. 13. Pressure-height tendency, 9z/9t, for lower fluid in
two-layer model, obtained from solution of (5) for 1500 GCT.
Units are 1072 cm/sec.
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the Coriolis parameter was defined as fy + Bay, where
fw and By are the values of f and 8 at 40°N. The
convergence of the meridians was ignored, by assuming
that the grid points (figs. 7 and 8) formed squares
whose sides were of a length equal to two degrees of
latitude. Some distortion is thereby introduced, but,
as shown by Haurwitz [[127, this is not a very great
error.

A value of ¢ was first obtained by averaging the
value of 2(%30 — F1000)/ (P30 + F1000) for all aerological
soundings at this time in the region, and setting this
mean value equal to (0.695)7(1 — ¢), according to
(26). This gave values of 0.889 for ¢ and 0.111 for
(1 — ¢). The distributions of 2/, 2 and % were then
determined, as outlined at the end of the last section,
and are shown in figs. 10 and 11.

Next, the coefficients in (7) were computed, and (7)
was solved by hand computation, using a modification
of Southwell’s relaxation method [18] and assuming
dh/dt to be zero on the boundaries. (The boundaries
for this part of the computation were one grid point
inside the heavy outline on the charts, since the com-
putation of the various advection terms, e.g., v-Vy,
requires pressure-height data from two points on each
side of the point for which it is being computed.)
The field of 0k/d¢ obtained by this process is shown
in fig. 12.

After computation of 8k/d¢, (5) could be solved for
dz/d¢. This was also done by relaxation, with dz/0¢ = 0
on the same boundaries as for d4/9t.° Fig. 13 contains
the results of this computation.

Sea-level pressure tendencies were then computed
by the following procedure. First, the last two equa-
tions in (26) were differentiated locally with respect
to time. 9z’/dt was then eliminated from each of them
by using (4), also differentiated with respect to time:

az' 19z oh
!
ot e ot ot

The resulting two equations were then solved for
62(]/8[:

620 1
of  1.252

- dz ok
[(1.626e — 0.374) — + 0.374(1 — ¢) ———]

at ot
For comparison with observed sea-level pressure tend-
encies, the predicted 1000-mb height tendency dz/dt
was then converted into an equivalent pressure tend-
ency, by multiplication with peg. (e = 1.25 X 10~*
g/cm3.) If dpo/dt is in units of mb (6 hr)™!, and
9z/0t and 0h/dt are in the same units as they are in
figs. 13 and 12 (102 cm/sec and cm/sec, respectively),
this results in the following equation for the pressure
9 These artificial boundary conditions make the computations
less meaningful at grid points close to those -boundaries, and

therefore no great significance should be assigned to the edges of
the areas covered by isolines on figs. 12, 13, 14 and 16.
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F16. 14. Sea-level pressure tendencies at 1500 GCT in mb (6 hr)~%,
calculated from two-layer model with rigid top.

tendency:

(@) = 0.255 (az) +0 984(6h (29
o) ot ‘ 5) )

It is clear from this equation, and the charts of d3/9¢
and 9h/dt, that the sea-level pressure tendency will
usually be the small sum of two larger quantities with
opposing signs. dz/dtf can be thought of as the pressure-
height tendency of an isobaric surface in the middle
troposphere (=~ 800 mb), while 9%/ can be considered
as approximately proportional to the negative of the
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F1G. 15. Observed sea-level pressure changes in mb from 1230-
1}%30 GCT 24 November 1950, corrected for normal diurnal
change.
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tendency of the thickness between 1000 and 300 mb,
0A/0¢, say. It is common experience that large posi-
tive values of 8A/d¢, for example (corresponding to
large negative values of d4/0t), are usually associated
with large pressure rises in the middle and upper
troposphere, so that the pressure tendency at the
surface remains small. Equation (29), together with
figs. 12 and 13, shows that the same state of affairs
is true in our model.

The tendencies computed from (29) are shown in

fig. 14, and the observed pressure changes between
1230 and 1830 GCT, corrected for normal diurnal

100

90 a0 70

F16. 16. Vertical velocity wy, of lower fluid at interface in model
(cm/sec). Areas of positive w; (rising motion) shaded.
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F16. 17. Precipitation and clouds at 1830 GCT 24 November 1950.
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change, are shown in fig. 15. A comparison of these
figures shows that the principal feature of the errors
in the computed field is a region of too great pressure-
fall, centered west of the Great Lakes.

The field of w, was next computed from the kine-
matic boundary condition at %:

wy, = dh/dt = ah/ot + v-Vh,

(v- VI being evaluated geostrophically). According to
(28), wy corresponds to the vertical motion in the
center of the troposphere. Fig. 16 contains the results
of this computation while, for comparison, fig. 17
shows the clouds and weather observed at 1830 GCT
on the 24th. Although the general pattern of w,
agrees fairly well with the observed hydrometeor dis-
tribution, it appears that the center of +4 cm/sec in
the field of w;, at 35°N and 88°W is probably an over-
estimate. (The amount of descending motion west of
the Great Lakes may also be somewhat overestimated.)

The source of the errors in the computed surface
pressure tendencies and vertical motion patterns may
be grouped roughly into three categories:

1. The restricted degrees of freedom of the model with
respect to the vertical coordinate;

2. The quasi-geostrophic assumption;

3. Other assumptions contained in the model.

Under (1), one would include such items as the lack of
anything in the model which might correspond to the
stratosphere and the uniform value of the vertical
stability that is inherent in the model. (Horizontal
variations of the stability imply more complicated
distributions of wertical wind shear.) Group (3) would
include such assumptions as the neglect of viscosity,
turbulence, heat exchange, compressibility, sphericity
of the earth, and the use of a finite-difference network
to solve the differential equations. It is, of course,
impossible to conclude from this single example which
of the various assumptions may be most instrumental
in causing the errors. Some speculation may not be
out of place, however, as long as it is recognized that
the speculation is based on this single case.

First of all, it does not seem reasonable that the
rigid top we have imposed on our model can represent
completely the influence of the stratosphere on the
motions of the troposphere. A seemingly more realistic
model may be formulated by superimposing an infi-
nitely deep fluid of still smaller density p'’ above the
fluid layer p’. The infinite depth and barotropy of this
upper fluid allow us to assume that there are no hori-
zontal motions in the new layer and that the pressure
in this upper layer is a function only of height. The
interface height H must now be a function of x, ¥
and ¢, since the pressure-height 2’ in the middle layer
is now produced hydrostatically. In fact, if ¢ = p'"/p’,
we have that 2’ = (1 — ¢)H + const. The only modi-
fication this introduces into the vorticity equations (5)
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and (6) is to add a term — fy'[g(H — h)]™ 8H/dt to
the left side of (6). (v’ VH is zero if v’ is geostrophic.)
However, if we try to obtain a differential equation
containing only dk/dt or only 8H/at from (4), (5) and
the modified form of (6), we find that it is necessary
to apply the operator V? to either (5) or (6) before this
can be accomplished. As a result, the equation con-
tains either V4(dh/dt) or V4(8H/dt) as the highest
order term.

When the ratio p’’/p’ is appreciably smaller than p’/p,
corresponding to greater gravitational stability at H
than at %, one can expect that dH/dt < 0h/dt. This
suggests that, under these conditions, the divergence in
the middle layer may, to a first approximation, be cal-
culated without taking dH/d¢ into account, just as was
done with the rigid-top model. One might then take the
value of 8z'/3¢ calculated from the rigid-top model, and

use it to evaluate the term — fyp'[g(H — k)1 9H/dt

in the modified form of (6) (by using the hydrostatic
relation, 0H /3t = (1 — ¢)~! 92'/ad¢). It is then possible
to solve (5) and (6) again to yield a second approxi-
mation to dz'/d¢, in which some of the effect of dH /¢
has been taken into account. This procedure may be
repeated, and it can be shown that this iteration will
converge to the correct value of 9z'/dt (the value
obtained when the complete biharmonic equation is
used), if the value of ¢ is sufficiently small and the
“wavelength” of the disturbances is not too large.
The first step in this iterative process was carried
out for the synoptic situation studied above. If
A(8po/8t), A(dh/dt), and A(dz/9t) are the changes in
the respective quantities produced by this first step
" in the successive approximation, one finds that

(1 — &) A(@po/ot) = (1 — ¢)(0.255) A(9z/d%)
+ (1 — €)(0.984) A(3h/01),

where the right (and left) sides of the equation are
independent of the choice of (1 — ¢’). [In other words,
A(9z/8t) and A(6k/0t) are themselves inversely pro-
portional to 1 — ¢.] In the application to the example
of 24 November, it turned out that the right side of
this equation was everywhere less than 0.15 mb
(6 hr)~1, so that a realistic value of (1 — ¢), say 0.2
or 0.3, would not produce changes in the surface
pressure tendency sufficient to account for the ob-
served errors. Although it is conceivable that the
inclusion of more of the successive approximations
might increase A(dp,/8t) somewhat, this approach did
not seem promising and was not carried any further.
This, of course, does not mean that the stratosphere
plays no important role in tropospheric developments,
but only that the addition of an inert third layer to

the two-layer model does not seem to affect the motion:

significantly, when the added gravitational stability
represented by this modification has a reasonable value.
Perhaps one of the most important sources of error
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may be in the application of the quasi-geostrophic
assumption to a situation characterized by large cen-
tripetal accelerations in the upper troposphere (fig. 8).
The replacement of the quasi-geostrophic assumption
by a similar statement based on the assumption of
gradient wind balance is quite complicated. It seems
reasonable, however, that, since most of the flow pat-
tern in our example is characterized by cyclonic
curvature, the geostrophic evaluation of the advection
term has led to an overestimate of the magnitude of
these terms, and that this overestimate would be
particularly important in the upper layer, z.e., in the
term v’-Vy'. This would be most significant in the
region just downstream and upstream from the vor-
ticity maximum in the upper fluid (located at 38°N,
90°W, on fig. 10). The maximum observed absolute
value of v'-Vy’ occurred just east and south of this
point, and was negative. It therefore contributed
greatly to the nearby maximum of d4/3¢t on fig. 12.
[See (7) and (9).] A reduction of d4/d¢ in this vicinity
would give a better picture of w,, by reducing the
+4 cm/sec maximum of w, in fig. 16, which does not
fit in very well there with the observed hydrometeors.
It is also possible that the fictitious pressure fall, west
of Lake Michigan on fig. 14, might be diminished or
removed if the advective terms were reduced in mag-
nitude. A comparison- of figs. 12, 13 and 14, with (30)
in mind, shows that this error cannot very well be
ascribed entirely to too large negative values of dk/d¢
arising from an overestimate of v’- Vy’ upstream from
the vorticity maximum in the upper fluid. On the
other hand, the values of dz/d¢ in this vicinity will be
made less negative if the negative values of v+ Vy were
reduced because of the cyclonic curvature (fig. 11).
It seems plausible, therefore, that a better prediction
of both the surface pressure tendency and vertical
motion could be made if some means were found. to
modify the quasi-geostrophic assumption so as to take
account of the effect of large normal accelerations on
the wind distribution. -

One extension of the model which would be rather
straightforward would be to incorporate the effect of
orography by adding a term fy[g(h — 2,) ] v-Vz, to
the vorticity equation for the lower fluid, where z, is
the elevation of the surface of the earth (suitably
“smoothed,” of course) above sea-level. Recent work
on the effect of orography on the general circulation
[1; 5] indicates that this may be an important effect
in the vicinity of large mountain complexes and
massifs.

It should also be possible to obtain an estimate of
part of the non-geostrophic component of the wind by
setting this component of the wind equal to the gra-
dient of a velocity potential ¢ such that the divergence
of this wind component, given by V¢, is equal to
the divergence computed from the quasi-geostrophic
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assumption. Once it is determined, by solving the
resulting Poisson equation for ¢, this non-geostrophic
wind could then be incorporated into the various
advection terms as a second approximation.

5. Summary, conclusions and suggestions for further
work

It is appropriate at this point to summarize briefly -

the material of the preceding sections. First of all,
aerological evidence shows that one of the most im-
portant features of the large-scale disturbances of
extratropical latitudes is the vertical distribution of
horizontal velocity divergence. Normally this quan-
tity is of opposite sign in the lower and upper halves
of the troposphere, so that the vertical mean of the
horizontal divergence is much smaller than the value
at most levels in the troposphere. This feature can be
reproduced in a simple two-layer model, whose motions
are restricted to those which are hydrostatic, quasi-
horizontal and quasi-geostrophic. With these assump-
tions, the time rates-of-change of the flow patterns
and mass distribution in the model are determined by
partial differential equations, similar to the familiar
Poisson differential equation, in which the tendencies
are the only unknown quantities. These equations are
adaptable to numerical forecasting.

To obtain a suitable set of relations between the
flow patterns of the model and those of the atmos-
phere, so that a forecast for the model will lead to a
forecast for the atmosphere, the behavior of the two-
layer model was compared with the behavior of a
continuous baroclinic model for an especially simple
case—that of small perturbations superimposed on a
baroclinic zonal current. The requirement that the
perturbations in the two models have the same phase
speed and instability properties leads to relations
which, when hypothesized to apply also for non-linear
flow patterns, determine the pressure-height fields and
gravitational stability of the two-layer model from
the pressure-height patterns (at the surface and tropo-
pause levels) and mean gravitational stability of the
troposphere.

The application of these results to an actual synoptic
example showed that many of the important features
of the vertical-motion and sea-level pressure-tendency
patterns can be inferred from the model. However,
the computed pattern showed some significant devia-
tions from the actual pattern, so that, if  this one
example can be considered as representative, some
further modifications of the model are necessary before
it can be considered as a valuable forecast tool.

Two likely modifications might be the incorporation
of a third inert layer to represent the stratosphere and
the correction of the quasi-geostrophic assumption so
as to take into account the effect on the wind field of
large normal accelerations. However, it would seem
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most profitable to apply the model to several other
synoptic situations before attempting any revision.
It would be especially instructive to compare cases
where the flow is strongly curved, as in the example
discussed above, with cases of less strongly curved flow.

Perhaps one of the most important uses of the
model may be its use in determining the subsequent
behavior of idealized initial states. The adaptability
of the model to numerical forecasting techniques sug-
gests that it may be especially valuable as a tool in
the study of non-linear flow patterns—these being
exceedingly difficult to treat with conventional mathe-
matical tools. An example of such a problem is the
motion of baroclinic cold anticyclones, as discussed by
Rossby [15]. The model may also be wvaluable in
studying some linear problems which are intractable.
Such a problem is the study of the behavior of small
disturbances superimposed on a basic, baroclinic zonal
current which varies with latitude. Although the be-
havior of perturbations on an arbitrary barotropic
non-divergent zonal current has been studied by Kuo
[13] and Fjgrtoft [9], and the behavior of perturba-
tions on a basic baroclinic zonal current which is inde-
pendent of latitude has been studied by Charney [2],
Eady [7], Fjgrtoft [9] and others, the combined
problem has not as yet succumbed to conventional
perturbation methods.

Of course, the general quasi-geostrophic baroclinic
model proposed by Charney can also be applied to this
type of problem, and is indeed capable of including
more complicated dynamic effects than the simpler
two-layer model; but this feature is not always an
advantage, since it is then more difficult, in a given
situation, to separate the important from the unim-
portant dynamic effects. As an example of this, one
may cite the recent forecasts made by Charney and
others with the barotropic model [67]. These forecasts
correctly predicted certain cases of ‘‘development’” at
the 500-mb level. If these forecasts had been made
instead from the complete equations of motion, it
probably would not have been at all clear that these
developments were essentially barotropic and quasi-
geostrophic in nature. [t seems likely, therefore, that
the two-layer quasi-geostrophic model has a proper
place in the scheme envisaged by Charney, where the
problem of understanding the dynamics of the atmos-
sphere is most logically attacked by studying a hier-
archy of models, beginning with the most simple and
gradually progressing to more and more complicated
models.
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