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A COORDINATE SYSTEM HAVING SOME SPECIAL ADVANTAGES FOR NUMERICAL FORECASTING
By N. A. Phillips ‘

Massachusetts Institute of Technology!
(Manuscript received 29 October 1956)

The coordinate system used to date in numerical fore-
casting schemes has been thex, y, p, f-system introduced
by Sutcliffe and Godart [4] and also by Eliassen [3].
This system, in common with the ordinary x, y, z, i-
system, has certain computational disadvantages in
the vicinity of mountains, because the lower limit of
the atmosphere is not a coordinate surface. The
purpose of this brief note is to describe a modified
coordinate system in which the ground is always a
coordinate surface.

It is obtained by replacing the vertical coordinate
¢ in the x, y, p, t-system by the independent variable
¢ = p/w, where = = w(x,y,t) is the pressure at
ground level. ¢ ranges monotonically from zero at the
top of the atmosphere to unity at the ground. In
describing the relation between this x, v, o, f-system
and the usual %, y, p, t-system, we will use a subscript
p to indicate a derivative along a pressure surface.
Differentiation in the new x, ¥y, ¢, t-system will have
no subscripts.

The following relation holds, where & can be %, v,

ori:
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8¢/, 98t wofdc

The horizontal equations of motion then become
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where F, and F, are the horizontal components of
the frictional force per unit mass, # = dx/dt, v = dy/dt,
f is the Coriolis parameter, and ¢ is the geopotential.
As is customary in most meteorological work, the
Coriolis terms proportional to the cosine of the lati-
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tude have been neglected. Equations (1) and (2)
differ from those in the x, ¥, p, t-system only by the
inclusion of the terms in d¢/d0.
The operator d/dt is given by
d d IR
—=—4u—+v— —,
dx dy 7 do 3)

where ¢ = do/dt.

The hydrostatic equation is obtained from the
relation

a da 9 19
3 0pdc 7o
and becomes, simply,
d¢/3c = — RT/g. . (4)

Here R is the gas constant, and T is the absolute
temperature. The coefficient 7! ¢(d¢/dc) appearing
in (1) and (2) can thus be replaced by — RT/x.
Since ¢ is known at ¢ = 1 (at the ground), a knowl-
edge of T(s) will give ¢(o) from (4) by integration.

The equation of continuity in the x, ¥, p, t-system is

Vo - U+ dw/dp = 0,
where w = dp/dt, and v is the horizontal velocity.

Introducing the relation dp/dt = w¢ + o(dn/dt), we
obtain the continuity equation in the new system:

V- 70 + 7 d6/dc + d7/8t = 0. (5)

Since ¢ is zero at the top of the atmosphere (¢ = 0),
integration of (5) with respect to o gives

4 o
—f V-avdoe — 6 —-
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Extension of the integration all the way to the
ground (¢ = 1) gives the formula for 9=/dt:

I 1
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since ¢ = 0 at the.ground.
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The first law of thermodynamics can be written as

dlnd 1

where 6 is the potential temperature, ¢, the specific
heat at constant pressure, and Q is the non-adiabatic
rate of heating per unit mass. When  is proportional
to dp/dt, as in the pseudo-adiabatic condensation
process, dp/dt can be computed from the equation

dp 4

— = ov'V1r-f V-7 do. 9

dt )
Finally, the potential temperature 6 is related to e, «
and T by the equation

Ind = InT — «(nr 4 Ine) + «lnP, (10)

where x = R/c, and P is the standard pressure
(normally 1000 mb) at which 8 is defined.

Equations (1) to (10), in the dependent variables
v, ¢, 8, T and =, would seem to have their greatest
advantage in making a numerical forecast with the
“‘primitive” equations of motion. Although they could
undoubtedly also be used in formulating a system
which incorporates either the quasi-geostrophic or the
quasi-nondivergent assumption [1; 2], the somewhat
more complicated forms of the pressure-force term in
(1) and (2), and of the continuity equation (3),
naturally result in more complicated vorticity and
divergence equations. However, the new system does
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have the following very real advantages in the
numerical process:

1. Vertical advection terms, e.g., & 9u/ds, are identically zero
at the top and bottom of the atmosphere.

2. The ground is a coordinate surface, so that the effect of
orography can be introduced without leading to either (a) un-
centered horizontal differences in the vicinity of mountains or,
alternatively, (b) the assumption that the hypothetical flow
patterns obtained by reduction to sea level actually exist.

The observations defining the initial state of the
atmosphere in this system would, of course, have to
be interpolated so as to apply at the various ¢-levels
used in the finite-difference forecast scheme rather
than at the conventional standard pressure levels.
Since the actual method used for this would probably
depend on the forecast equations to be employed,
and since the various possibilities for performing this
interpolation are quite obvious, this aspect of the
problem will not be discussed here.
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