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ABSTRACT

The small-scale “noise” disturbances of the atmosphere create difficulties for the numerical integration
of the equations of motion. For example, their existence demands that very small time differences be used
in the integration of the finite-difference equations. To eliminate the noise, a filtering method is devised
which consists essentially in replacing the primitive hydrodynamical equations by combining the geostrophic
and hydrostatic equations with the conservation equations for potential temperature and potential vortic-
ity. In this way a single equation in the pressure is obtained for the motion of the large-scale systems. A
method is suggested for its numerical integration.

The spread of data required for a short-period forecast is discussed in terms of the rate of spread of in-
fluences or “signal velocity” in the atmosphere. It is shown that a small disturbance is propagated both
horizontally and vertically at a finite rate. Estimates are obtained for the maximum signal-velocity com-
ponents in order to establish bounds for the influence region. It is found that numerical forecasts for periods
of one or perhaps two days are now possible for certain areas of the earth but that forecasts for longer periods
require a greater spread of observation stations than is available.

A method is given for reducing the three-dimensional forecast problem to a two-dimensional one by con-
struction of an “‘equivalent-barotropic” atmosphere. The method is applied to the calculation of the 500-mb
height tendency, and the results are compared with observation. A rule is derived for determining the

DECEMBER 1949

positions of the isallohyptic centers from the field of the absolute-vorticity advection.

1. Introduction

A fundamental need in weather prediction is a
mathematical or statistical apparatus capable of deal-
ing with the large number of parameters required for
describing the meteorologically significant motions of
the atmosphere. For want of such an apparatus, the
theoretical meteorologist is constantly forced to reduce
the number of degrees of freedom of the motion
by imposing kinematic constraints in the form of
symmetry, periodicity, and stationarity conditions,
and by reducing its dimensionality. The synoptic
meteorologist, who must also reduce the freedom, does
it by substituting for the actual motion the ‘gestalt’
constructs: pressure system, ridge, trough, air mass,
front, wave, jet stream, efc. As the success of a weather
prediction depends upon the number of relevant par-
ameters the forecaster has at his disposal from which to
draw statistical or dynamical inferences, it is not
difficult to understand the disappointingly slow prog-
ress made in the field of weather prediction.

It is for this reason that recent developments in the
design of large-scale digital computing machines have
revived the interest of meteorologists in the problem
of numerical weather prediction. Promise is given that

! This paper was begun by the author as a National Research
Fellow at the University of Oslo and completed at the Institute
for Advanced Study on a meteorological project sponsored by the
Office of Naval Research of the U. S. Navy. A summary was pre-
sented at the New York meeting of the American Meteorological
Society, 28 January 1949,

the purely mechanical difficulties connected with the
handling of great quantities of data can be overcome
so that the computational time factor will eventually
cease to be the unsurmountable obstacle to the prac-
tical realization of a program of numerical forecasting.
The role of the enormous weather factory envisaged
by Richardson (1922) with its thousands of computers
will, it may be hoped, be taken over by a completely
automatic electronic computing machine.

This note of optimism must, however, be tinctured
by the sober realization that there are serious obstacles
other than the time factor that still stand between the
hope and it fulfillment. There still remains to be
answered the basic question: Do we actually know
the laws governing the motion of the atmosphere?
In the last analysis this question can be answered only
by deducing consequences from hypotheses and sub-
jecting them to experimental vertification. Since it is
practically impossible to experiment with the atmos-
phere on a large scale, and since an adequate similarity
theory or technique is lacking for model experiments,
a theory describing what the atmosphere will do under
a given set of circumstances can be tested only by
integration of the appropriate equations of motion. In
this connection the fundamental importance of high-
speed arithmetical devices is readily appreciated. By
reducing the mathematical difficulties involved in
carrying a physical train of thought to its logical con-
clusion, the machines will give a greater scope to the
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making and testing of physical hypotheses and so lead
to a wider use of inductive methods in meteorology.

The motions described most accurately by the exist-
ing observations are the large-scale disturbances of the
atmosphere. Just as we achieve a degree of certainty
in predicting the motion of a gas by transferring atten-
tion from the individual molecules to certain space
and time averages, so by restricting ourselves to the
major weather-producing motions of the atmosphere
whose horizontal scale is of the order of 1000 km, we
minimize the random effect of the micrometeorological
motions. For the former the laws may be assumed
known to a first approximation and to be expressed
by the nonviscous hydrodynamical equations and the
adiabatic equation. No doubt modifications in the laws
will be required as forecast periods are extended and
as inadequacies are revealed in the existing equations
by comparison of prediction with observation.

An introduction to an important aspect of the nu-
merical forecast problem is afforded by the following
simple example. Consider the motion of small per-
turbations in an incompressible atmosphere of height
H moving with constant translation U over a plane
earth which rotates with the angular speed 2. A motion
of this sort could conceivably occur near the poles of
the earth. If the motion is assumed not to vary across
the current, then, in a rectangular coordinate system
with x directed along, and y normal to, the current,
the perturbation equations become

ou ou ok
5;+U£=*g5;+fv, 1
dv v

Y + Ugc = — fu, 2
o g 1Y, g% 3)
ot dox g dax

where % is the perturbation height. Let us solve these
equations numerically by calculating the successive
time increments in #, », and 4. Using centered space
differences and uncentered time differences we re-
place da/dx by

[a(x 4+ 3Ax) — a(x — 3Ax)]/Ax,

and da/dt by
Ca(x + At — a(x)]/At.

Then if the values of u, v, and % are known at the
points . . . x — Ax, x, x -+ 3Ax, . .. along the
base AB of the grid triangle of fig. 1, their values
can be determined at the apex P by iterative applica-
tion of the finite-difference analogues to (1-3). It
might be thought that the degree of approximation of
the finite-difference solution to the actual solution of
the equations of motion would increase with diminish-
ing Ax and At independently of the manner in which
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these increments approached zero, but this is not the
case. To demonstrate we eliminate » and » from (1-3)
to obtain

2 7] d 3 \?
o Ve [(5+v5)"
—ar |+ p% -0 @
dx? ot

an equation which governs the motion of both gravity
waves and the meteorologically far more important
large-scale disturbances. Now it can be shown by a
generalization of Riemann’s method for hyperbolic
equations (Holmgren, 1904) that the solution of (4)
at the point (£, 7) is determined by the initial values
of & on that part of the x-axis which is intercepted by
the characteristic lines x — £ = &+ ¢(¢ — 7), where
c= \[gTJ If Ax and Af are so chosen that the solution
depends on data not covering at least this much of
the x-axis, it is obvious that the finite-difference ap-
proximation will not converge to the correct solution
for Ax, At — 0.2 From the figure it can be seen that
the condition for the grid triangle PAB to contain
the characteristic triangle PCD is $Ax/At > ¢, or
At < 3Ax/c. 1f H is taken to be about 9 km, the height
of the homogeneous atmosphere, ¢ becomes 300 m
sec7l, and if Ax = 400 km we must have At < 11
minutes. Richardson chose approximately the value
400 km for Ax but the value 6 hours for At. His compu-
tations would not have yielded a correct forecast even
with the best possible data.

This situation illustrates a basic shortcoming of the
primitive equations; the meteorologically important
solution of (4), given to a close approximation by
h="n(x— UtO0),u=0,and v = f'g 0h/dx, i.e., by
a geostrophically balanced lateral current advected
with the zonal wind, can be found only by taking
into account the entirely irrelevant gravity motions if
the solution is to be obtained by numerical integration.

2. The geostrophic approximation

In an article entitled ““On the scale of atmospheric
motions’?® the writer (1948) presented a method for

FiG. 1. The initial values of %, v, and % are given at the points
along the x-axis (¢ = 0). The finite-difference computation gives
the values at the remaining points in the grid triangle PAB. As
presented, the grid triangle lies within the characteristic triangle
PCD, and the computation fails.

2 A mathematical proof of the corresponding theorem for hyper-
bolic equations has been given by Courant, Friedrichs, and
Lewy (1928). -

3 Hereafter referred. to by (S).
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filtering out the meteorologically insignificant ‘‘noise’
motions from the primitive equations. This method
permits a simplified treatment of certain theoretical
problems and is also useful for numerical forecasting.
By replacing the primitive equations by the simplified
equations presented in (S), a method of integration
was developed whereby the difficulties encountered
in the application of Richardson’s method can be
overcome. We shall now turn to a discussion of this
method.

In a rectangular coordinate system the Eulerian
equations of motion for a nonviscous fluid may be
written '

du L9 1 50 (5)
dt = ) o U sm ©y
dv 19p
— = — -~ — 2Qusin o, (6)
dt p 0y

1ap

p 93

where the x-axis points east, the y-axis north, and the
z-axis vertically upward. To avoid unnecessary geo-
metrical complications, we assume the earth plane.
We also assume that the hydrostatic approximation
holds and that the x-component of the Coriolis force
involving w is negligible.

It was shown in (S) that the orders of magnitude of
the horizontal acceleration and the horizontal Coriolis
force satisfy the relation

Cc/S

horizontal Coriolis force Vi

horizontal acceleration

, (8)

where f is the Coriolis parameter 2Qsin ¢; C is a
characteristic mean speed of propagation of the hori-
zontal streamline pattern, and .S a characteristic hori-
zontal length parameter. The ratio C/S is a kind of
characteristic frequency of the motion, and f is the
frequency of a horizontal inertial oscillation. The rela-
tion (8) states that the winds are near-geostrophic
providing the characteristic frequency of the motion
is small compared to the horizontal inertial frequency.
For the major pressure systems of the atmosphere C/S
is of the order 10~® sec™!, whereas f is of the order
10~ sec™’. Hence the fractional deviation of the wind
from the geostrophic is of the order 10!, and the
large-scale wind systems are quasigeostrophic.

This property of the wind implies a corresponding
property of the horizontal divergence. If the varia-
bilities of f and p are ignored, elimination of p from
equations (5) and (6) by cross differentiation with
respect to x and y gives

= (3) %

on
f +f—= 9
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and it follows from (5), (6), and (8) that the magnitude
of each of the first two terms in this equation is one
order less than that of the last two. Hence the sum of
the terms du/dx and dv/dy must be smaller by one
order of magnitude than the terms themselves. As
shown in (S), the inclusion of terms arising from the
variability of f and p does not alter this conclusion.
We may therefore state that the horizontal divergence
is small to the same extent to which the winds are
geostrophic.

The near-geostrophic and near-incompressible prop-
erties of the motion have the following destructive
consequences. If it were desired to determine the local
time derivatives of # and v from the fields %, v, w, and
p, it would be necessary to measure % and v with an
error no greater than one per cent in order to obtain
du/dt and dv/dt with an error not exceeding ten per
cent. But such accuracy is unattainable, not only
because of the inadequacy of present measuring tech-
niques, but because the values of the geostrophic devi-
ation associated with the smaller scale motions, for
which S is small, may be as large as those pertaining
to the major motions or even larger. Whereas the first
difficulty conceivably can be overcome by a refinement
in observing techniques, the second cannot. A similar
difficulty is encountered in the application of the
tendency equation where an accurate evaluation of
the horizontal divergence is required. Here again the
noise level is far too high; the small-scale divergences
are as great in magnitude as the large-scale or greater.
Thus, constant-level horizontal divergence charts show
that the scale of the predominant horizontal diver-
gence pattern is perhaps one-fifth that of the major
pressure patterns, and in consequence, the large-scale
horizontal divergence patterns are largely obscured.

The hydrodynamical noise effect may be further
illustrated by an example from another branch of
hydrodynamics. Suppose it were required to determine
the two-dimensional tidal motion of an ocean. Since
all except sound motions may be regarded as incom-
pressible, the natural choice of dependent variable is
the stream function. A computational scheme requir-
ing a knowledge of the divergence du/3x + dw/0dz
would be unsuitable because this quantity is more
sensitive to sound waves than, say, to surface gravi-
tational waves. In practice, therefore, one filters out
the sound waves by substituting the derivatives
—3y/dz and 9y /ox for u and w respectively in the
vorticity equation.

In a similar way, the knowledge that div; v is small
should be used as a directive for substituting the
geostrophic wind components for # and v respectively
in the equation for the vertical vorticity component,
taking care first to eliminate the horizontal divergence.
It is necessary to perform this elimination because the
geostrophic wind components can be used to evaluate
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the horizontal divergence no more than the expressions
—dy/8z,0¢/0x can be used to evaluate du/dx + dw/dz.
For the purpose of eliminating the horizontal diverg-
ence we suppose that there exists a conservative quan-
tity, o, in the atmosphere depending only on $ and p:

do/dt = 0. (10)

With the aid of this law we may eliminate the hori-
zontal divergence between the vorticity equation

d
E(ZQ-FVXU)—}-(ZQ—{—VXv)V-v

= (2Q 4+ V X v)-Vo+ V(o) X Vp,
and the continuity equation,

dp du  dv

= + +aw)
a  "\ox oy ez )’

to derive the conservation equation

(11)

(12)

dit[p“IVo'-(ZQ +VXv)]=0,
where 28 is the earth’s vorticity. If, as a first approxi-
mation, isentropic motion is assumed so that ¢ may
be the potential temperature 8, we obtain essentially
Rossby’s equation for the conservation of ‘‘potential
vorticity” (see Rossby, 1940). Since the isentropic
surfaces are quasi-horizontal in the large-scale systems
(13) may be written

Zt[ﬂ( +n]=o0,

(13)

(14)

where ¢ is the relative vertical vorticity component
dv/dx — du/dy.

It is now permissible to introduce the geostrophic
and hydrostatic approximations for %, », and p in
terms of p. If then w is eliminated between the equa-
tion of conservation of § and (14), the following equa-
tion in the pressure results:

9 *  ff+ )
2t s |
2 3 ap
— + o« + ,3)]3; =, (15)
where s = g 3(In 8) /dz and «, B8, and « are functions of

p and its space derivatives. We assume

321; a?P
pf ( dx?

an approximate expression for the geostrophic vor-
ticity derived in (S). From the fact that (15) is of the
first order in the time, one may conclude that the
motion is determined merely by a knowledge of the
initial pressure field. Further, from the manner in
which it was derived, we can expect that it will be

(16)
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insensitive to the small-scale noises of the atmosphere
and therefore suitable for numerical computation.
Thus it was shown in (S) that all motions whose period
is not greater than a pendulum day are filtered out by
this equation.*

A necessary attribute of a meteorological theory is
that it express those factors which are consciously or
unconsciously used by the forecaster, since his skill is
essentially positive. The fact that such terms as divs v
and dv,/dt are never considered by the forecaster may
be taken as an indication that they are not representa-
tive of the motions with which he deals. One might
have predicted, solely on the basis of the behavior of
the forecaster, that an equation governing the motions
of only the large-scale systems would have the prop-
erty that its solution is determined by the initial
pressure field alone.

Equation (15) has certain disadvantages. Some of
these are easily eliminable by an appropriate modifica-
tion of the underlying assumptions, whereas others
are more basic. It was not necessary, for example, to
assume the motion adiabatic. To provide for condensa-
tion effects the law of conservation of wet-bulb poten-
tial temperature could have been used for (10). Other
nonadiabatic energy changes, such as radiative trans-
fer, could also have been taken into account by a suit-
able modification of (10). However, in a first attempt
at numerical forecasting of the present sort, it has not
been considered advisable to deal with effects which,
from the available evidence, appear to be secondary.
Among these are included eddy viscosity. In support
of the view that the role of friction is secondary, we
may cite the work of Haurwitz (1941) who, on the
assumption that virtually all the frictional dissipation
of kinetic energy takes place in the friction layer,
showed that the kinetic energy of a hypothetical
atmosphere moving with a uniform speed of 10 m sec™?,
equal to that of the wind at the top of the friction
layer, would be dissipated in 72 hours. It is now known
that the actual kinetic energy of the atmosphere ex-
ceeds that of this hypothetical atmosphere by a factor
of 4 or more. The dissipation time is therefore closer
to two weeks, and it appears that surface friction may
be safely ignored for forecast intervals of a day or two.

What is of more concern is that in applying the geo-
strophic approximation, all motions whose periods are
smaller than or of the order of a pendulum day are
filtered out of the equations as noise. In doing so,
motions of considerable importance for forecasting
small-period weather changes may be excluded. For
the present, it appears that one can only hope to fore-
cast the major pressure patterns and to use these as
steering currents for the smaller motions. The filtering

4 Other means of eliminating the noise sensitivity which involve
arithmetical smoothing processes are also being investigated by

the writer and his colleagues. However, the method given here
appears to be physically the most natural.
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process then results in a certain distortion in the large-
scale motions owing to the fact that the small- and
large-scale motions are not linearly superposable. This
amounts, as Reynolds has shown, to the introduction
of a set of turbulent stresses. The tentative assumption
is that these stresses will not be important for short-
range forecasts since the smaller scale motions are
confined to a relatively thin surface layer of the
atmosphere. '

3. Method of integration and initial-data requirements

We note that (15) is a second order partial differ-
ential equation of the elliptic type in 8p/d¢, since
(f + ©)/s is positive for large-scale motions. If at any
moment, ¢, the field of p is known, itcan be determined
for the time ¢ + At by solving for dp/dt. An n-fold
iteration of this process then gives the solution for the
time ¢ + nAL.

It would appear from the elliptic character of (15)
that the initial pressure field must be known through-
out the atmosphere, since the only surfaces where the
boundary conditions are known as functions of time
are the surface of the earth and the top of the atmos-
phere. Notwithstanding this there is, for practical
purposes, a finite rate at which influences propagate
in the atmosphere, 4.e., a point forecast can be made
with a knowledge of the initial pressure field within a
limited region surrounding the point. This will be
demonstrated in the next two sections.

4. The horizontal signal velocity

The concept of the speed of propagation of a hydro-
dynamical influence, or ‘‘signal velocity,” in the
atmosphere is an important one for meteorology. It is
used to determine the dimensions of the region through
which the initial data are needed in forecasting for a
prescribed area, and more generally, it enters in any
investigation of the causal connection between one
part of the atmosphere and another.

A limit to the speed of propagation of a hydro-
dynamical influence, or ‘‘signal velocity,” would be
the velocity of sound were it not for the fact that the
use of the hydrostatic approximation filters out pure
sound waves and therefore introduces an infinite speed
of propagation in the vertical. Although horizontally
moving sound waves are also eliminated in this process,
the horizontal signal velocity remains finite because of
the possibility of vertical accommodation for a hori-
zontal displacement. In this case the horizontal signal
velocities would be limited essentially by the speed of
gravity waves, but the introduction of the geostrophic
approximation as an additional artificial constraint
eliminates gravity waves as well and causes these
velocities also to become mathematically infinite. This
is the explanation for the observation that the solution
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of equation (15) for 8p/d¢ is mathematically deter-
minate when only the initial pressure field is known for
the whole atmosphere.

If one is concerned only with the horizontal propa-
gation of effects in large-scale atmospheric systems,
it is sufficient to study the propagation in a barotropic
atmosphere with velocity independent of height, be-
cause” such an atmosphere can always be chosen to
approximate the mean horizontal motion of the real
atmosphere.® A set of filtering equations equivalent to
(15) for a barotropic atmosphere was found in (S) to be

S

1 a9p 14

T T V=T,
pf 9y pf 0x

where p and p are the surface values of pressure and
density. The earth is assumed plane and the motion a
small perturbation independent of y on a constant
zonal current of strength U. We then obtain

a9 ik d a
. SN SN
dx20t 0x3 at ax

(17)

U =

=0, (18

where p is now understood to be the perturbation
pressure, 8 = df/dy, and \? = f?/RT with T the mean
surface temperature. It is convenient to take the day
as the unit of time and the radius of the latitude circle
as the unit of distance. In these units € = 27 and
B = 4w cos? ¢. At 45° latitude, 8 = 27 and A% = 2.5.
Unless otherwise stated it will always be assumed
that ¢ = 45°

For greater simplicity the problem is reduced to one
in which U = 0 by referring the motion to a coordinate
system moving parallel to the x-axis with the speed U.
If we neglect the small error arising from the fact that
the earth’s surface deviates slightly from a geopoten-
tial surface in this system, an approximation equiva-
lent to the assumption that the ground has the
(negligible) slope of an isobaric surface, equation (18)
takes the simple form

92 a d
(————)\2)—1—’-]—5‘—-?—:0.
at ax

P (19)

The exact equation in the moving system is formally
the same as (19) if 8 is replaced by 8’ = 8 4+ A?U.
For U = 15 m sec™! the correction AU is only 10 per
cent of B and can be ignored. We shall, however, take
it into account in calculations in which U is in the
vicinity of 15 m sec™! by increasing 8 to 1.18—from 2=
to 7.0 at 45° latitude.

Equation (19) has the wave solution
p = gitka—rt) (20)

5 See section 6.
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provided

y =

— BE/ (B + %), (21)

where k is related to the wave length L by the formula
k = 2m/L. The phase and group velocities ¢ and ¢,
are given by the formulas

6=V/k= _ﬁ/(k2+)\2),
b B =)
dk (kt+ )2

(22)

Cg =

' (23)

and are represented in fig. 2 as functions of &.%

€,¢ (deg. doy™)
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F1G. 2. Phase and group velocity in a resting barotropic atmos-
phere represented as a function of wave number k. The length
unit is a radian of longitude at latitude 45°, so that £ = 1 corre-
sponds to a wave length equal to the circumference of the 45°
latitude circle.

Let us consider the disturbance emitted by a point”
source at a certain instant of time. This disturbance
will consist of a series of waves spreading out from the
point along the positive and negative x-axis, preceded
in each direction by a non-wavelike forerunner con-
taining but little of the total energy. Within the main
body of the disturbance, & and » are slowly varying
functions of distance satisfying (21) and for which the
group velocity (23) can be defined. It can be shown
(see, for example, Jeffreys, 1946, p. 482) that the
kinetic energy contained between two points each
moving with the local group velocity is constant; hence
the maximum velocity of propagation of a point dis-
turbance is effectively limited by the maximum group
velocity, and the minimum velocity by the minimum
group velocity. Since an arbitrary disturbance can be
regarded as a collection of point sources, the result
follows that the pressure at a given locality will remain
virtually unaffected by a disturbance whose distance
away is either greater than the maximum group ve-
locity times the forecast time or less than the minimum
group velocity times the forecast time.

The mathematical argument is based on the method
of stationary phase (see Jeffreys, 1946, p. 474). Write
the initial function p(x, 0) as the Fourier integral,

1 o0 0
plx, 0) = z—f dk f p(a, 0)e*—2 da, (24)
T v —

¢ The importance of the group-velocity concept for dispersive
atmospheric motions was first recognized by Rossby (1945); see
also Yeh (1949).

7 Strictly, a plane source.

JOURNAL OF METEOROLOGY

VOLUME 6

whence, in virtue of (13) and (14), the pressure dis-
tribution

1 ] 0
Pl t) = — f dk f pla, O)eitk=—1 do (25)
T J_w —

satisfies both the initial condition and the equation of
motion (19). Now subtract (24) from (25) and inter-
change the order of integration:

p(x, £) = plx, 0) + f I — a, )pla, 0) da, (26)
where

1 ]
I(x, ) = 2——7“[ (et — 1)e= dk. 27

In case U # 0, the formula corresponding to (26) is

+ f“’ Ix — Ut — a, t)p(e, 0) da.

-

Equation (25) states that the pressure may be re-
garded as a sum of sine waves of varying length each
moving with the wave speed given by (22). In contrast
(26) states that the pressure may be regarded as a sum
of point-source disturbances.

The function I plays the role of a Green’s function
and is called the “‘influence function” since it deter-
mines the influence of an initial disturbance at a given
point at the time ¢ Physically, I(x — «,f) is the
change in the value of p at the point x in time ¢ which
is caused by a unit point disturbance originating at
the point « at the time 0.3

The principle of stationary phase states in applica-
tion that the integral I will annihilate itself by de-
structive interference except for those values of x —~ «
for which the phase k(x — ) — »t is stationary, i.e.,
except where

X — o = (4.

Hence, if « satisfies either of the inequalities

x — a > (max ¢,)t, x — o < (min ¢y)t,

the phase cannot be stationary, and I is negligible.
We may therefore replace the lower and upper limits of
integration in (26) by x — (max ¢g)f and & — (min ¢g)?

8 The notion of a meteorological influence function has been
used by Ertel (1941; 1944) to prove the impossibility of forecasting
for a limited region of the atmosphere. He argues that because the
influence function is generally different from zero over the whole
earth there will be a basic indeterminacy in the forecast if the
initial data are known for only a part of the atmosphere. This
reasoning is formally correct, providing sound signals are ex-
cluded, just as it is correct to say (Rayleigh (1909)) that a dis-
turbance of the surface of an ocean is propagated instantaneously,
if the ocean is incompressible. But for practical purposes there is

_an effective limit to the speed of propagation of a disturbance in

both cases, and this limit is given approximately by the maximum
group velocity.
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respectively, so that the pressure at a point x is de-
termined by a knowledge of the initial disturbance
between these two limits alone.

Fig. 2 shows that max ¢; (= §/8\?) = 19.8 deg day™!
and min ¢; (= — B/A\2) = 158.4 deg day™ at 45° lati-
tude. The excessively large magnitude of min ¢, is
contrary to forecasting experience and can be dis-
counted as the discrepancy arises only from the arti-
ficial assumption of an infinite plane earth. If one
takes account of the fact that the maximum wave
length at latitude 45° is limited to the circumference
of the latitude circle (k¢ = 1), it is seen from fig. 2 that
the minimum group velocity takes the more reasonable
value —49.3 deg day~!. Moreover, even this negative
value may be discounted, for negative group velocities
occur only in a small range of k, corresponding to
waves with lengths greater than 18,000 km, and these
are associated with little of the total energy. Thus it
may be anticipated that I{x — «, £) will be appreciable
only between the limits « = x and & = x — (max cg)t.

However, too much confidence cannot be placed in
these values, first because the method of stationary
phase gives only an asymptotic approximation for
large ¢ to the integral I in (26), and ¢ = 1isnot “large,”
and second, because the application of the method pre-
supposes a continuous variation in &, whereas in fact
k can only assume integral values, corresponding to
wave lengths equal to integral fractions of the circum-
ference of a latitude circle. We therefore turn to a
more accurate method for getting at the values of the
signal velocity.

In accordance with the requirement that & have only
positive integral values the motion will be described
in a cylindrical coordinate system with x measured in
radians of longitude at the latitude ¢ and ¢ in days.
To solve (19) it is then necessary to use Fourier series
in place of the Fourier integral. The solution analogous
to (26) becomes

bl = pe,0) = [ Ivts = @ Dp(a, 0 de, (28)

(S e

where

1 e
Da(x, 1) = ” 2 (g7t — 1)et=, (29)
T —%

The form analogous to (27) for a nonzero zonal
current is

p(x, 1) = plx — U, 0)
+ f” L{x — Ut — o, Hp(e, 0) dee.  (30)

As no analytic expression for the influence function
I)2 could be obtained, the series (29) was evaluated
numerically for ¢ = 1. The resulting function is
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graphed in fig. 3. We note that Ix? is small outside the
region 0 < x < 27° longitude with boundaries corre-
sponding to the signal velocities 0 deg day—! and 27
deg day~! respectively. These values are to be com-
pared with the values 0 deg day~! and 19.8 deg day—!
for the effective group velocities given previously.

Iz (x,1)

 —

~IBO -I50 -120 -90 -60 -30 O

, === X
30" €0 90 120 150 180

& IS o )

o

-7

F16. 3. The influence function I*(x,f) for ¢ = 1 day. This
function represents the 24-hour change in p at the point x pro-
duced by a unit point disturbance at the origin at ¢ = 0.

As a check on the accuracy of the signal-velocity
determination, the influence function I was used to
forecast the actual distribution of v, the meridional
geostrophic wind component at 45°N measured from
the observed height profile at 500 mb,® using data
taken from the U. S. Air Force Air Weather Service
Historical Map Series. The actual map is shown in
fig. 4. Since v also satisfies (19), the forecast equation
is identical to (30) with v substituted for .

The v distribution was calculated first by integrating
over the entire range of x and next by integrating only
from 0 to 27° longitude. The mean zonal speed at 45°N
was measured as 15.6 deg day~. The results are shown
in fig. 5. Curve I is the observed distribution for 0400
GCT 12 January 1944, curve Il is the twenty-four
hour forecast obtained using the entire range, and
curve III by using the restricted range. Curve 1V
represents the observed distribution of v for 0400 GCT
13 January 1946. The fact that curves II and III
coincide practically within the limits of observational
error is a verification of the conclusions concerning the
finiteness of the signal velocities.

The correspondence between the forecast and the
observed distributions has seemed sufficiently close,
particularly over North America and the Atlantic
Ocean, to justify a further investigation with a view
toward practical application. The discussion of these
results has appeared in another publication (Charney
and Eliassen, 1949). In this work it was found that the
lateral variation of a disturbance has a significant

® The choice of the 500-mb level is justified in section 6.
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F1G.-4. The 500-mb chart for 0400 GCT 12 January 1946. The letters R and F are located respectively at the points of maximum
and minimum-height:change for the 12-hr period following the time of the map. The letters R’ and F’ have a corresponding
meaning for the instantaneous computed change, and the crosses locate the extreme points in the field of the vorticity advection,

effect on its motion, especially if the scale of the dis- becomes
turbance is large. To complete the discussion of the 92 32 ap ap
zonal signal velocities we shall now take up the effect P + == N)—+8-—=0 (31)
of these variations, o x 9y ot dx
If we reintroduce the y-dependency, equation (17) in a coordinate system translating with the mean zonal
v {m. sec)
Lo
30
20
~
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F16. 5. Observed and predicted 500-mb distribution of v at 45°N. Curve I is the distribution observed 0400 GCT 12 January 1946.

Curve II is the distribution predicted for 0400 GCT 13 January 1946, using initial data covering the entire latitude circle at 45°N,
and curve III is the predicted distribution using initial data covering only the calculated influence interval (x — Ut — 27° tox — U%).

* Curve IV is the distribution observed 0400 GCT 13 January 1945.
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wind. Assuming a solution of the form
p — ei(krﬂm—vt)

we find
(32)

14

— BE/(R® + 1 + N)

and
v B2 — p— 2

= — == ————————— 33
AN eE o

Cg

These formulas become identical to (22) and (23)
provided A? is replaced by u? + A% In the aforemen-
tioned article the most representative value of
a® = u? 4 \? was found to be about 18 corresponding
to a lateral wave length of about 7200 km. (We note
for future reference that the quantity A? is no longer
important, since its value (2.5) is small compared to
a’. This means that it is possible to introduce the non-
divergence assumption since this is equivalent to
setting A? = 0.) The maximum and minimum group
velocities now assume the much smaller values
B/8a* = 2.5 deg day—'and — B8/a? = — 20 deg day™?,
respectively. (The difference between gand 8/(= 1.18)
is here ignored.)

Turning again to the question of the distinction
between group and signal velocities we replace 82/dy?
by —pu?in (31), so that equation of motion becomes
identical to (17) with A? replaced by a? The solution
can therefore be represented in the same form as (28):

M&ﬂ=ﬂ&®+jwmw—aWMm®M,6®

where 7,? has a meaning analogous to I The function
I2(x, t) has been computed by the method described
in the article by Charney and Eliassen for t = 1, 2, 3,
4,5, 6, 7days and is tabulated in table 1. The values of
Iy used to evaluate I,: for t = 2, 3, and 4 were calcu-
lated from data given by Forsythe in a paper referred
to in this article. The values of I,: for ¢ = 5, 6, and 7
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were calculated from the formula®

Iaz (x, 4 + tz) = I,;2 (.’)C, tl) + Ia2 (x, tg)
f I (x — a, 1) I (o, t2) da.

To arrive at a rational means for determining where
I;* can be neglected, 7.e., to calculate the signal ve-
locity, we suppose that I,*(x) is identically zero for
—T=x= — x;and 7 = x = ¥, and call the result-
ing function I,2(x). The error incurred by replacing
I by I,2is then, from (34),

g(x) = f [La(e — @) — Ta(s — &) Jp(e 0) de

Let us define the quantity Q? by the equation

Q= j;: ¢ (x) dx/f_: p%(x, 0) dx

so that Q? measures the ratio of the mean square
deviation of p from its true value to the mean square
value of p itself. The criterion that I,2(x) shall be an
acceptable approximation to I.z(x) is that Q? be less
than some definite value, determined by the kind of
accuracy desired for the forecast. Making use of the
inequality

f_ U_:GW — @)p(a, 0) dardx
= j:r p(x, 0) dx j:w G2 () dx,

which holds for arbitrary periodic functions G(x) and
#(x) when one of their mean values is zero, we find

®=x f "[L20) — Fa(x) T dx.

-

1 This formula has been obtained independently by C. C. Koo
(personal communication).

TABLE 1. Values of the influence function I:s(x,f) at latitude 45° for ¢ = 1, 2, 3, 4, 5, 6, 7 days; « is expressed in degrees longitude.

x Te(x1) Is(—x1)  Ls(x,2) Tus(—x2) Isx3) Is(—x3) Lis(x4) @Is(—x4) Ts(x,5) Is(—x,5)  Iis(x,6) Is(—x,6) Is(x,7) ©Is(—x7) =«
0 —4.301 1.999 —10.604 , . 1.997 —18.121 0.780 —25.885 —0.684 -33.100 —1.598 —39.335 —1.533 —44.821 —0.719 0
5% —5.495 -7.518 —7.983 —6.535 —3.501 0.417 S

10 ~1.506 1.239 -2.549 1.701 -2.484 1.285 —1.057 0.312 1.577 —0.732 4.344 —1.274 6.481 —1.123 10

15% —1.072 —-0.365 1.056 2.624 3.634 3.460 15

20 -0.529 0.777 —0.476 1.358 0.194 1.417 1.169 0.902 1.643 0.041 1.482 —0.728 0.457 —1.065 20

25% —0.134 0.345 0.896 0.899 0.336 —-0.698 25

30 -0.167 0.457 0.000 0.968 0.333 1.240 0.538 1.082 0.359 0.531 —-0.172 -0.215 —0.923 —0.807 30

40 —0.048 0.275 0.066 0.695 0.181 1.061 0.152 1.159 -0.071 0.914 —0.310 0.275 —0.411 —0.376 40

50 —0.016 0.161 0.031 0.469 0.042 0.817 -0.028 1.035 —0.111 0.979 —0.148 0.603 —0.070 0.033 50

60 0.002 0.091 0.028 0.311 0.023 0.619 —0.012 0.898 —0.029 0.979 ~0.006 0.811 0.061 0.386 60

70 -0.003 0.057 0.001 0.209 —0.009 0.455 —0.024 0.729 —0.027 0.925 —0.006 0.931 0.023 0.666 70

80 0.003 0.028 0.006 0.125 0.000 0.312 —0.005 0.561 0.008 0.782 0.016 0.898 0.024 0.790 80

90 —0.001 0.020 0.000 0.089 —0.002 0.230 0.003 0.439 —0.001 0.669 0.002 0.852 0.006 0.867 90

100 0.001 0.008 —0.001 0.048 —0.005 0.144 —0.007 0.307 —0.001 0.522 —0.006 0.730 0.006 0.834 100
110 0.001 0.007 0.003 0.035 0.005 0.108 0.011 0.238 0.008 0.425 0.015 0.617 0.029 0.773 110
120 —0.002 0.004 —0.004 0.019 —0.007 0.065 —0.007 0.157 —0.006 0.309 -—0.006 0.500 0.013 0.674 120
130 0.002 0.001 0.005 0.012 0.007 0.044 0.010 0.115 0.011 0.218 0.027 0.392 0.049 0.568 130
140 —0.002 0.003 —0.004 0.010 —0.004 0.031 —0.001 0.079 0.000 0.176 0.012 0.316 0.042 0.481 140
150 0.002 —0.002 0.003 0.001 0.003 0.014 0.006 0.048 0.016 0.113 0.037 0.223 0.078 0.371 150
160 —0.001 0.002 —0.001 0.007 0.001 0.019 0.010 0.042 0.015 0.100 0.048 0.186 0.097 0.310 160
170 0.001  —0.001 —0.001 —0.002 0.000 0.001 0.005 0.015 0.025 0.061 0.067 0.131 0.131 0.233 170
180 0.001 0.001 0.003 0.003 0.009 0.009 0.024 0.024 0.049 0.049 0.105 0.105 0.192 0.192 180

* The values of the influence function for x = + 5°, +15° and +425° are included in order to give a better definition of the func-

tion, as the variation is particularly rapid in the range 0° to +30°,
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The right-hand expression therefore serves as a means
for placing a bound on the fractional mean square
error incurred by “cutting off”’ the influence function
at the points x; and —x,. For a given value of Q? the
points x; and —x, are chosen to give the smallest
influence region consistent with the above inequality.
The results of the computation are shown in the graph
in fig. 6 where x; and x, are plotted as functions of ¢
for different values of Q2.

The curves are extended to ¢ = 0, since there is a
finite influence region for the pressure tendency. To
see this differentiate (34) with respect to ¢ and set
t = 0. One obtains

9p

§@m=fxwﬂw@mm
where -
B w ket sinh a(r —|x]|)
K@) =—3 2 1 ol
(<) 27 _Z°:° B+ a? a6 sgn sinh anr

The error made in cutting off K(x) at the points
x = = s is measured by the quotient

’ Tr[K(x —a) — K(x — a)Jp(a, 0) dax 2dac
AL !

or
W{KﬁmmmHﬁme—Kmyml
= fﬂ %?(x,O))2dx ,
where -
fo- 31

As one may show that

T T ap 2
f p2(x, t) dx and f ( 5 (x, t)) dx

are invariants of the motion, the bound on Q2 is de-
pendent solely on

f[ﬁ@—ﬁ@ym
These integrals are determined empirically from an
observed distribution of p(x,¢) at any time £ Spe-
cifically, the data for 0400 GCT 12 January 1946
were used.
The straight lines in fig. 6 are the group-velocity
curves:

x = (maxcy)t = (8/8a?)t ‘and x = Imin ¢, |t = (8/at.
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F1G. 6. Group- and signal-velocity curves for ¢* = 18 and U =0.

The signal-velocity curves approximately parallel the
group-velocity curves for large values of £. This con-
forms with the notion that the group velocity ap-
proaches the signal velocity for large ¢{. However, for
small £, say ¢ < 2 days, the group velocity gives a very
inaccurate estimate of the signal velocity, and for
t < 1, in particular for ¢ = 0, it gives no indication
whatsoever, since there is a finite influence region
fort = 0. -

The last remark may at first seem paradoxical, but
the following consideration will indicate that no basic
physical principles are violated. While the instantane-
our pressure change becomes a local property of the
motion as soon as sound waves are permitted, the
change that one obtains in this way bears no relation
to what one means by the meteorological pressure
tendency. The ideal barograph, viz., one that records
all pressure variations, traces a continuous but vir-
tually nowhere differentiable curve; a series of ex-
tremely small-scale microbarographic fluctuations are
found to be superimposed on the uniform macroscopic
pressure curve, among which are included the sound
fluctuations. Thus, even if an ‘‘instantaneous’ time
derivative of the pressure could be measured it would
give no indication of the meteorologically significant
trend. It is clear then that one is never concerned with
the instantaneous change but only with the change
during a time interval that, while small, is large enough
to permit the high frequency fluctuations to be aver-
aged out. But in such an interval there will be time for
the effects of disturbances at finite distances from a
point to make themselves felt, for these effects signal
their arrival with the velocity of sound. If the flow is
in quasigeostrophic adjustment, the effective region of
influence for this time interval must be precisely the
one already determined from K(x).

It is possible to obtain an estimate of the lateral
signal velocity by again using group-velocity con-
siderations, although in view of what was found in
preceding paragraphs the estimates can only be rough.
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If a plane wave disturbance of the type

ei(kz:t;m—vt)

exists, where v = »(k, u), we define the quantities
Cgz = Ov/0k and ¢y, = dv/du to be the group-velocity
components in the x- and y-directions respectively.
These quantities have the kinematic and dynamic
properties of the one-dimensional group velocity. Thus
it can be proved by a method similar to the one used
by Jeffreys (1946), employing the method of stationary
phase, that the kinetic energy E of a point-source
disturbance obeys the conservation law

OE  0cyE  dcyE
at ax ay

This law states that the energy of the disturbance as-
sociated with a given area in the x, y-plane does not
change when each point of the area moves with the
local group velocity. If the group-velocity components
Cez and cgy are bounded by max ¢, and max ¢,y respec-
tively, we may assert that the energy cannot spread
at arate exceeding that determined by these maximum
values. Since any two-dimensional disturbance can be
expressed as a sum of point-source disturbances, we
obtain the general result that the propagation of
energy, and therefore the propagation of signals, is
limited in speed by the maximum group velocity.
By differentiating (32) with respect to u we find

Cay = 2Bku/ (B + p? + W)

If £ and u are not restricted the extreme values of
Cgy are £=B/4N? or £7/5 radians day~!. These occur for
u? = 3\?) corresponding to a lateral wave length of
25,300 km, which is unrealistically large. But here as
before one must place some restriction on the kine-
matics of the motion. The observed wave-like pertur-
bations in the atmosphere can be said to'have a nodal
line just north of the subtropical high cells, about
25°N in winter, and a nodal point at the pole. Hence
one may say that the lateral wave length cannot
exceed 2 X 65 = 130 degrees of latitude, which means
that u cannot be less than 2. For a given u the maxi-

mum value of ¢,y is %3‘/36;1(#2 -+ A%)—% and occurs for
k? = 3(u? + N\?). This expression has a maximum at
u? = 3?2 and thereafter decreases monotonically with
increasing u. Hence its maximum value, compatible
with the condition g = 2, occurs for 4 = 2 and is equal
to 0.48 rad day—!, or 28 deg day~—'. The corresponding
minimum value is —28 deg day. It should of course be
mentioned that the approximation of taking 8 and f
constant in the two-dimensional case is very crude, so
that the computed signal velocities can be considered
only as very rough estimates.

We note that identical results are achieved by apply-
ing the method of stationary phase directly to the
general solution of (31) expressed by the Fourier
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integral,

P53, ) =4—fr—f_f_f_f_p(a70)

X ei[k(z-a)-i—#(u—'y)—vt] do d,y dk dﬂ. (35)

One has here to consider the stationarity of the phase
function k(x — o) + u(y —v) — », and is thereby
led to consider the equations

Ov/ok = cez = (x — ) /1,
/O = cy = (y — 1)/1.

The generalization from the one- to the two-dimen-
sional case is obvious.

Recalling that the zonal speed U must always be
added to the calculated zonal signal velocities and
taking this to be 18 deg day~!, we may give a rough
estimate of the size of the influence region surrounding
a point for a one-day forecast. Fig. 6 shows that the
distance to the west is about 35 4 18 or 53 degrees and
the distance to the east about 50 — 18 or 32 degrees.
The distance north and south, estimated from the
group velocities, is 28 degrees. It is probable that these
estimates are somewhat too large. This is because no
restriction has been placed on the scale of the motion
except that 2 =1 and p = 2, whereas the energy
spectrum of the traveling disturbances of the atmos-
phere shows a maximum for disturbances having a %
value of between 6 and 9 and a value of u between 4
and 7. For such motions the group velocities are less
than those calculated; one may presume the same to
be true for the signal velocities. The estimates never-
theless serve to establish a safe margin for error in
first attempts at numerical forecasting. The experience
gained from such attempts will undoubtedly lead to
better estimates.

With the present estimates one may say that the
horizontal extent of the existing network of meteoro-
logical stations is adequate for predicting the motion
over certain areas of the globe, viz., for the eastern
United States, the Atlantic Ocean, and Europe in
middle latitudes. For periods much in excess of twenty-
four hours, however, it is likely that influences spread-
ing from uncharted areas will render accurate forecasts
impossible.

5. Vertical signal velocities

It is important to know how influences are propa-
gated vertically as well as horizontally. A forecast is
possible only if disturbances above the regions in
which data are available produce negligible effects at

. lower levels. This may be because of the small energy

available at great heights or because the vertical signal
velocity is so small that influences do not propagate
into the forecast area within the forecast time interval.
We shall investigate the latter possibility.
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While it is true that the hydrostatic assumption
implies mathematically infinite vertical signal veloci-
ties—just as the geostrophic approximation implies
mathematically infinite horizontal signal velocities—it
is by no means necessary that significant changes be
propagated instantaneously. It cannot be argued, for
example, that an increase or decrease of mass above a
given level causes an instantaneous pressure change at
the ground. Such a change can take place only if com-
pensating changes do not occur simultaneously below
the level to annul the effect; the hydrostatic approxi-
mation does not necessarily imply a rigid connection
between one part of a vertical column and another.
We shall show, in fact, that appreciable effects are
propagated slowly in-a statically stable atmosphere.
For this purpose the following simple baroclinic model
is adopted.

We consider a resting!* incompressible atmosphere
with mean density decreasing exponentially with
height at a rate corresponding to the decrease in a com-
pressible atmosphere with a constant mean tempera-
ture T; thus, p = poexp (—2/H), where H = RT,/g.
At the same time, to simulate the stability character-
istics of the actual atmosphere, we suppose that the
static stability —d(In p)/dz, where it occurs in
the process equation, dp/dt = 0, may be given
the value 1/k, corresponding to a constant aver-
age value of the observed stability, d(ln 8)/3z. This
procedure has the advantage of mathematical sim-
plicity and at the same time leaves the motion, in its
essential aspects, similar to the motion in a stable
compressible atmosphere with adiabatic changes of
state. The motion is also assumed to be independent of
the y coordinate.

A stratified atmosphere permits a doubly infinite set
of plane internal wave motions, corresponding to a
doubly infinite set of horizontal and vertical wave
numbers. An arbitrary initial disturbance can be re-
garded as a linear superposition of such internal waves.
For a given x, waves will be propagated in the vertical
direction and will be reflected by the ground. A ver-
tical group velocity can be defined in much the same
manner as the meridional group velocity for the baro-
tropic model. The demonstration that this group, or
signal velocity, is limited will now be given.

The equation governing the motion is derived from
the two conservation laws

d lap )]_0
Z[@(;H o, 6

dp/dt = 0,

together with the hydrostatic and geostrophic rela-
tions. On the basis of the assumptions concerning the

1t As before, the results to be obtained permit an easy generaliza-
tion to the case of constant zonal motion.
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stability, we obtain

a [ o2 h [ 0% 19
[_erﬁ(p p

d¢

e _+__._

]-}- ap-—O 37
022 H oz ﬂax*'

Ix? g
The surface boundary condition in p is found by

setting w equal to 0 in the second equation in (36). The

resulting equation states that the density at the

ground is advected with the wind, or, since the mean

wind is zero,

ap 19 ap

0= —=

¢ g 0t 9z

(38)

at the ground. At the upper boundary of the atmos-
phere we must have p = 0.

The system (37, 38) can be solved as follows. Intro-
duce the dependent variable, p = — g=19p/dz, and

‘make the substitutions

7 = (g/fH).

p = ge—z/ZH'

The equations become

d f9q Iy aq

— — 4+ — — ? — =0, 39

a 6x2+ on? wq) +66x (39)
dg/ot =0,  (n=0) (40)

where w? = f2h/4gH?.
Equation (39) is satisfied by the two plane-wave
solutions exp [#(kx &= un — »t)7], provided

— B/ (B* + 1* + ).

The general solution is expressed by the Fourier
integral

1 0 oo 4 -]
g(xv s t) = _f f dk d/-" f f g(a, Y 0)
41!'2 —w vV 0 —w ¥ —o0

X eilk@—a)tpt—=rtl do dy,

y =

(41)

If we define g(x, —n, 0) = — g(x, 1, 0) the boundary
condition is also satisfied.

We may now apply the same consideration to (41)
as to (35), with n corresponding to y. The vertical
group velocity is found to have the extreme values

2
= = F_IJ_B_zj:EI_{_\/EI—{
dt dndt g 4u? fh
If % is taken as 10° m so that the stability —a(In p)/ds
corresponds to a mean lapse rate of 7C km™, the
extreme group velocities are 4.5 km day~! at 45°
latitude. Thus influences above 16 km, the maximum
height at which data are available, will not reach the
ground within a 48-hr period. From this point of view,
it is likely that the extent of data now at our disposal
will be adequate for the preparation of low-level fore-
casts for periods of from 24 to 48 hours.
The smallness of the vertical signal velocity is not
the only reason for expecting that upper-atmosphere

dz dzdy _
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conditions will not influence lower level motions for
short periods. Since the initial function

g(x, 2,0) = p(x, 2, 0)e*/?H

damps out quickly with height, we have an additional
reason for replacing the infinite y-limits of integration
in (41) by finite values within the region of available
data.

6. The equivalent-barotropic atmosphere

The amount and the quality of data are not the only
factors that must be considered in the preparation of
a numerical forecast. The method of integration itself
is of the highest importance and may mean success or
failure. Since there does not exist any adequate theory
for the numerical integration of the nonlinear equa-
tions encountered in meteorology, one must proceed
by performing a series of numerical experiments. With
respect to the order of these experiments, it was de-
cided that the greatest economy of labor could prob-
ably best be achieved by treating in turn each of a
hierarchy of models embodying successively more and
more of the physical and numerical aspects of the
general forecast problem. The one- and two-dimen-
sional small-perturbation models have already been
discussed ; we shall now turn to the next step and treat
a nonlinear two-dimensional model.

The choice of a suitable, yet practical model was the
first problem. In view of the success with which Rossby
and others had applied small perturbation theory in
the barotropic model to explain a variety of atmos-
pheric phenomena, it was deemed worthwhile to ex-
tend those studies to finite amplitude motions.
Rossby’s studies and that of Charney and Eliassen
(1949) strongly indicated that those aspects of the
observed motions which involve horizontal dispersion
—rather than vertical transport—of energy could be
explained as essentially barotropic phenomena. Fur-
thermore it was felt that the procedural experience
gained in this study would provide an excellent
preparation for the eventual attack on the baro-
clinic case.

The basis of the correspondence between the baro-
tropic and baroclinic atmospheres lies in the notion of
the “equivalent-barotropic atmosphere,”” a barotropic
atmosphere in which the horizontal motion approxi-
mates the actual motion of the atmosphere at a par-
ticular level, called the “‘equivalent-barotropic level.”
In a previous article (1947), the writer gave a rationale
for the choice of the equivalent-barotropic level in the
case of small-amplitude perturbations in a baroclinic
zonal current. In the following discussion, the concept
of equivalent-barotropic atmosphere will be extended
to apply to finite-amplitude motions. One essential
feature making it possible to define such an atmos-
phere is the observed fact that the winds in the large-
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scale systems vary little in direction with height above
a rather shallow surface layer. This property may also
be deduced from the thermal wind equation as a neces-
sary consequence of the fact that the horizontal iso-
lines of pressure and temperature nearly coincide in
the large-scale motions. Another feature is that the
variation of wind speed with height is similar along
all verticals. These two properties are expressed
through the equations

u = A(p)u'(x, y)
v=A4(p) (%, ).

Let us insert these expressions for % and v into the
horizontal equations of motion (5) and (6) and, after
multiplying by —pg, integrate with respect to z from
the top to the bottom of the atmosphere. If the small
terms involving w in the convective parts of the ac-
celeration components are ignored, we get

ou ou ou 1 4Q
—+Ki— 4+ Kto— = — —— + £,
ot dx y Do Ox
av o v 1 4Q
—+Ka—+Kvo— = — —— — fq,
at ox dy po 3y

where

o 0 0 2
Q=fpdz, K=fA2dp/(fAdp) ,
20 0 20

and 4, 7 are the values of «, v at the level p where 4(p)
is equal to its vertical pressure average, i.e.,

pd®) = [ 4@ ap.

Denoting the vorticity of the flow 4, 7 by {, we get by
cross-differentiation

9 d d d
__{ + Ku—§ + K7 -§ —fv
dx dy
. f0u 0%
+U+m%—+~
ox  dy
- L (im0
Pt \ 9x 3y dy dx

1 f (3P0'3P aPoap)d
—_— i — —— —— z =
pg dx dy Jdy dx
The right-hand side is set equal to zero since the
assumption of horizontal barotropy implies that

the isobars are parallel at all levels. This equation may
be combined with the tendency equation,

Do dpu apv )
P e = — iGNl W
o P £ ( ay

ou

'+617)
bo dx  dy ’
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to yield
1 of af o d
-(£+Kﬁ—§+Kﬁ—§+la
f+ Ki\ ot dx dy dy
1 apo
(2 ) =0
po\ar P

which is equivalent to Rossby’s potential-vorticity
equation for a barotropic atmosphere,

i(§+f _o
at \ po ’

provided the geostrophic approximation % dpo/dx
—+ D 0po/dy = 0 is made, implying

dpo 9P

dps 9P w
Wy — = — — ,
o "oz a B

and provided K =~ 1.

This last assumption was tested empirically. The
ratio of 4 to its maximum value A* was found to be
quite well approximated by the empirical formula

A = A¥*gel,

where ¢ is the ratio of p to its value at the level where
A = A* This formula gives K = 5/4, so that no
great error is made by setting K =~ 1. The formula
also gives the value 550 mb for 7, the pressure at
the equivalent-barotropic level, if the tropopause is
taken at 250 mb and the ground at 1000 mb. This
value agrees fairly well with the values 570 mb and
610 mb obtained in the previous article (1947) from
two different mean zonal wind profiles. In a particular
weather situation (0400 GCT 12 January 1946) a
small systematic variation of p with latitude was ob-
served, but none with longitude. The over-all mean
for some 40 points selected in the range 20°-90°E,
25°-65°N, was 602 mb, with a standard deviation of
78 mb. The pressure at the equivalent-barotropic level
would thus appear to lie between 550 mb and 600 mb.

In the following we shall suppose that the surface of
the earth is horizontal and that 8p,/8¢ is negligible.
The latter assumption is equivalent to the non-
divergence assumption which, as indicated in section 4,
is probably valid for motions whose scale is not too
great. Using the geostrophic approximation, we may
then write

(8/0t + v V) + f) =0 (42)
for the equation governing the motion of the equiva-
lent-barotropic atmosphere.

The numerical solutions of the corresponding
equivalent-barotropic equation for a spherical earth
can be obtained in the following way. On a spherical
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earth we have

where ¢ is the latitude, X the longitude, and @ the
radius of the earth. Since it is now common to operate
with constant-pressure maps it will be convenient to
introduce the height z of an isobaric surface as the
dependent variable. The geostrophic relations then
take the form

g 0z g 9z
Yy = ——— —-
fa cos ¢ AN

Whence, upon ignoring'small terms arising from the
horizontal variation of f,

g
$e = —Asp
f

g[ 1 a ( 9z ) 1 d%z ]
= - — || —cose) + —— |
flLa*cos ¢3¢ \ 9o a? cos? ¢ IN?
where A, is the expression for the Laplacian operator

in surface spherical coordinates. Equation (42) may
be written

Ad2/8t = Jo(ie + f, 2),
where J; is the Jacobian operator
1 9 4d a 9
a?.cos ¢ ( 5:‘)—; - Epa_x .

(43)

In accordance with the general integration pro-
cedure outlined in section 3, we regard (43) as a par-
tial differential equation in the height tendency 9z/4t.
The solution can be immediately written

dz
—_— , )
P (e, M)

= f f Ga(0)Tu(o, N; ¢, N)a? cos o AN do',  (44)

where o is the great circle distance between the
fixed point ¢, A and the variable point ¢’, A/, and
Gs(0) = (2m)~'1n 2 sin 3¢ (Courant—Hilbert, 1931), the
double integral being extended over the entire sphere.
Since f vanishes at the equator the right-hand side
ceases to be defined. We can escape this difficulty by
arbitrarily assigning some constant value to J, in the
vicinity of the equator. Since a finite time is required
for effects to propagate from this vicinity to northern
latitudes no errors in the computed motion at these
latitudes are introduced provided the forecast time
interval is not great.

The nature of the Green’s function G, illustrates
clearly the dependence of the signal velocity on scale.
G, decreases so slowly with increasing ¢ that appar-’
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ently the motion over at least an entire hemisphere
must be taken into account in evaluating the tendency
at some fixed point. This seems to contradict the con-
clusions already reached regarding the smallness of
the influence area for the pressure tendency, but it
must be remembered that a certain limited scale was
predicated in arriving at this area for the influence
region. It appears that the effects of small-scale circu-
lations at large distances cancel themselves out,
whereas those of the large-scale circulations do not.
The task of numerical integration is somewhat
simplified if (43) is transformed into a differential
equation in the plane by conformally mapping the
spherical earth onto a plane, say by a stereographic
projection from the south pole. The equation becomes

V29z/0t = J(mif-1gViz + f, 2), (45)

where m is the magnification factor sec? (37 — }¢),
while J is the plane Jacobian and V? the plane La-
placian.

For hand computation (45) can best be solved by
the method of relaxation (Southwell, 1946). Using
this method, the 500-mb height tendency was com-
puted for the map shown in fig. 4. The solution was
obtained for the interior of the indicated polygonal
area on the assumption of constant z along the
boundary.

It would have been interesting as a check on the
barotropic model to compare the calculated with ob-
served tendencies for the entire area. Since upper-air
tendencies are not measured we have recorded the
position of the centers of rise and fall in the height
change from 0400 GCT 12 January to 1600 GCT 12
January by the letters R and F, and, for comparison,
the calculated centers by the letters R’ and F’. The
comparison can only be made from 130°W to 20°E
longitude since the 1600 GCT map extends only over
this region. The agreement of the observed with the
calculated positions has seemed sufhciently good to
warrant a continued effort to exploit the barotropic
model. The results of this work will be presented in a
later publication.

Finally we show that the location of the centers of
maximum and minimum height tendency can be de-
duced solely from the properties of the field of J, t.e.,
of the field of absolute vorticity advection. Let us
consider the height tendency at a point where J is a
maximum. Since 9z/d¢ is effectively determined from
a knowledge of the values of J within a relatively small
circular area surrounding this point, its values on the
periphery may be chosen as constant. Then (45) may
be interpreted as the equation for the displacement
(82/8t) of a stretched membrane acted upon by the
normal force field J. If the membrane is fixed along a
level, nearly circular curve, and J has a maximum at
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the center and is symmetrically distributed about the
center, it is physically evident that the displacement
will be a maximum at the center. We may therefore
state the rule that the centers of rise and fall are located
approximately where J takes on its minimum and maxi-
mum values respectively, or, what is the same, where
the absolute vorticity advection v-V({ + f) is re-
spectively a maximum or a minimum. To illustrate
this rule the positions of the maximum and minimum
points in the field of J have been entered in the
map of fig. 4 as crosses. The rule seems to be well
substantiated.
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