EAS471,“Atmospheric Modelling” Exam 23 April, 2010

Professor: J.D. Wilson Time available: 120 mins Value: 35%

Please answer in the exam booklet. Symbols have their usual meteorological in-
terpretation. Some data are given at the back.

Multi-choice (22 x 3% = 11%)

1. If the vector F represents the convective flux density of a certain scalar property ¢ and @
the velocity field, then

are perpendicular

2. The units of a diffusivity (as appears, for example, in 9¢/0t = K 0*¢/0x?) are

(a) ms

(b) ms2
(¢) m2s™"
(d) m?s™
(e) kgms™?

3. A continuous random variable ¢, defined on the range —oco < ¢ < o0, belongs to a

probability distribution whose probability density function is f(q). If

GE/_OO q f(g)dg =0

o0

then the variance of ¢ is given by

(a) Joo, @ f(q) dg
(b) J7o f dq =1
(© )7

(d) 7, da

(e) o0



4. In the context of numerical solution of the advection equation

0}0) dp
8t+ U@xio

using finite differences in time (At) and space (Az), a stability criterion on the Courant
number arises. This criterion involves a ratio of velocities, one of which, namely ,
is in origin

(a) U; numerical
(b) Az/At; numerical
(c) Az/At; physical
(d) At/Ax; physical
)

(e) A¢/Az; numerical

5. The Navier-Stokes equation (expressing conservation of momentum) and the conservation
equation for a passive, non-reacting (“tracer”) species are given as data, as are conven-
tions for representing the velocity vector. The advection term w; Oc/Ox; in the tracer
conservation equation may alternatively be written _

(a) ©-Ve

(b) V (cu)

(c) ude

(d) ug;+vg—z+wg§
)

6. Again referring (if necessary) to the Navier-Stokes equation and the tracer conservation
equation (given as data, along with definitions of Reynolds, Rossby & Peclet numbers),
the Lagrangian approach to treating dispersion of a tracer is valid in the limit of

(a) infinitely small Reynolds number
(b) infinitely large Reynolds number
(c) infinitely small Peclet number
()
)

(e

infinitely large Peclet number

infinitely large Rossby number

7. According to the prescription covered in EAS471 (i.e. following Molinari, 1993), a “mesoscale”
model of the atmosphere is , and has horizontal gridlengths in the range

(a) non-hydrostatic; 10 < A < 50 km
(b) hydrostatic; 10 < A < 50 km

(¢) non-hydrostatic; 1 < A <10 km
(d) hydrostatic; 1 < A <10 km

(e) Eulerian; A <10 m



8. Let 0T'(z), dq(z) be adjustments to resolved temperature and specific humidity made in
the layer zp < z < zp of a particular grid column upon application of a cloud scheme(s)
of the physics package of an NWP model. If these adjustments satisfy

—Lyp 5(1(2) = PG 5T(Z)v (5T > 0) )
q(z) +0q(z) = ¢.(T+T,p),
where ¢, (7T) is the saturation specific humidity for temperature 7', then the package that
was activated corrects for
(a) moist convection

(b) dry convection

(¢) non-convective resolved-scale supersaturation (assumed to result in condensation)

9. The two diagnostic conditions pertaining to the resolved state of the atmosphere and
that cause the activation of the “Kuo scheme” for unresolved deep convection are
(where Vy is the horizontal grad operator, and vy the resolved horizontal velocity)

(a) low level convergence Vy - Uy < 0, and conditional instability of a deep layer

(b) low level convergence Vy - g > 0, and absolute instability of a deep layer

(c)

(d) existence of CAPE (convectively available potential energy) exceeding 1000 Jkg™*,

and supersaturation of a deep layer

low level convergence Vg - vy < 0, and absolute instability of a deep layer

10. The Kuo scheme, when activated, computes the quantity

Mt:—/ Vu-(pqiy) dz+ Ey
0

where Ej is the surface evaporation rate, ¢ is resolved specific humidity, and other quan-
tities are as above. This quantity represents

(a) a supply of latent heat (and, ipso facto, water vapour) available to build convective
clouds
(b) the amount of precipitation produced by the scheme

(c) the energy used to raise the environmental temperature (i.e. resolved model state
T'(z), pre-correction) to the temperature T,(z) of the diagnosed cloud

(d) local cloud fraction, i.e. fraction of sky occupied by deep convective cloud

11. The shortest wave that can be represented on a grid with spacing Az has wavelength



12.

13.

14.

The Canadian Meteorological Centre’s Global Environmental Multiscale (GEM) model for
Numerical Weather Prediction treats (resolved) advection terms by a “semi-Lagrangian”
method. A fully Lagrangian approach to solving the momentum equations is not possible
because

(
(

a) velocity (and momentum) are conserved properties

b) velocity (and momentum) are not conserved properties

)
)
(c) momentum is absorbed by the surface underlying the atmosphere
(d) fluid elements are not absorbed by the surface

)

(e) too many grid cells would be required

Suppose the distribution of a property ¢ = ¢(x,t) in a fluid/gas is governed by

05 oF,

+Q(x,1),

where x = z; signifies position (note: you might compare this “¢-eqn” with the species
conservation equation given as data). The transport term in this equation is

(a) 0¢/0t
(b) @
(c) Fi
(d) —

Suppose the distribution of a property ¢ = ¢(x,t) in a fluid/gas is governed by

0] OF;
== X, t
(the “¢p-eqn”) where x = x; signifies position. This is a general statement than

the species conservation equation given as data, in the sense that

(a) more; the flux density F; of the above ¢-eqn is generic, embracing any or all trans-
port mechanisms (i.e. potentially radiation, convection, diffusion/conduction), and a
volumetric source term is included, allowing for in situ production or destruction of

¢

(b) less; a volumetric source term is here included, allowing for in situ production or
destruction of ¢

(c) less; no diffusion term appears in this equation for ¢

(d) less; no advection term appears in the ¢ equation



15. If p, T, ¢, are the density, temperature and specific heat of air and # is the velocity field,

the convective flux density of sensible heat is

16. Suppose the profile of f(z) along the z-axis is represented at discrete nodes, separated by
interval Az, and labelled J. If the derivative df /dx is represented as

(ﬂ) _ fi= i
de ), Az

then the truncation error is of order

a

(a) A
(b)
(¢) VAz
(d) (zs41+25-1) /2
(e) fr—fia
17. Suppose f(z,t) defined on —1 <z <1, 0 <t is governed by the heat equation
af 0 f
2 g2
ot Ox?
with boundary conditions f(—1,t) = f(1,t) = 0, and that f(z,0) = cos kwz/2 where k is
an arbitrary positive integer. Initially f has a maximum magnitude of 1, i.e. |f|n. = 1.

At later times the true state must satisfy

(@) |Flma =k
(b) [flmz > 1
(©) |flme <1
(d) | flme = A
(€) | flme = K2



18. Gridpoint computations for the influence of unresolved scales of motion in the ABL on
the resolved absolute humidity p, will involve the equation

op. ) I
- = — [ w'p,
( 8t physics

The missing operator “[.]” is _
(a) UO/0x+ V 0/0y (U,V the resolved horizontal velocity components)
(b) W 0/0z (W the resolved vertical velocity)

(c) 0/0x

(d) 9/0z

(e) K9/0z (K the eddy diffusivity)

19. The “curvature” of a scalar field ¢(z, vy, z) is given by (or measured by) application of the

operator
(a) V
(b) V-V
(c) k-V
(d) k x
(e) k xV

20. According to the Lax Equivalence Theorem, “If a difference equation is consistent with the
differential equation it represents, then stability is the necessary and sufficient condition
for convergence.” Here the technical meaning of “consistent” is that

(a) truncation error must vanish in the limit of vanishing grid interval(s)

(b) truncation error must vanish in the limit of infinite grid interval(s)

(c) the numerical solution ¢™*™ equals the true (but generally unknown) solution ¢ to
the differential equation in the limit of vanishing grid interval(s)

(d) the difference between the numerical solution ¢™*™ to the difference equation and the
(generally unknown) exact solution ¢* to the difference equation vanishes in the limit
of vanishing grid interval(s)

21. According to the Lax Equivalence Theorem, “If a difference equation is consistent with the
differential equation it represents, then stability is the necessary and sufficient condition
for convergence.” Here the technical meaning of “convergence” is that

(a) truncation error must vanish in the limit of vanishing grid interval(s)

(b) truncation error must vanish in the limit of infinite grid interval(s)

(¢) the numerical solution ¢™*™ equals the true (but generally unknown) solution ¢ to
the differential equation in the limit of vanishing grid interval(s)

(d) the difference between the numerical solution ¢™*™ to the difference equation and the
(generally unknown) exact solution ¢* to the difference equation vanishes in the limit
of vanishing grid interval(s) 6



22. The Random Displacement Model (RDM) for the vertical motion of a fluid element (or
“particle”) is

a7 = %—de VoKdtr,
z

where dZ denotes the increment in height during the time step dt, K is the eddy diffusivity,
and r is chosen from a Normal distribution with zero mean and unit variance. The RDM
(a) is an Eulerian method
(b) requires the imposition of a spatial grid in order to allow computation of trajectories

(c) is a valid description of dispersion even in the near field of a source (i.e. for travel
times ¢t much smaller than the Lagrangian time scale for the vertical velocity)

(d) is a grid free (Lagrangian) treatment of turbulent convection that is equivalent to the
“diffusion” model

(e) is also known as the “generalized Langevin equation” or the “first-order Lagrangian
stochastic model”

Short answer: 3 x 8% = 24%

Answer any three questions from this section.

1. Perform a dimensional analysis to find the form of the law for the drag force F' on a sphere
of density p and radius R that is falling at velocity V through still air whose density and

kinematic viscosity are respectively p,, v (the units of kinematic viscosity are m? s_l).

2. Determine the 4x4 tridiagonal coefficient matrix M and the right hand side B in a matrix

expression of form M ® = B for the numerical solution of
— =20

022
on 0 < z < 1, subject to 6(0) = 0, #(1) = 1. Set up your solution with four, equi-spaced
gridpoints indexed J = (1,2, 3,4) positioned at z; = (0,1/3,2/3,1). At internal gridpoints
(J=2,3) the curvature is to be represented as

0 Oy +050— 20,
022 Az? '

Note: you are not being asked to invert M, nor to obtain the (numerical) solution vector
O = (917 627 937 94)



3. Briefly summarize the Canadian Meteorological Centre’s Global Environmental Multiscale
(GEM) model of the atmosphere, as used for short range (48 hour) Numerical Weather
Prediction. Your response should cover salient points in regard both to model dynamics

and model physics (grid point computations).

4. In the context of grid point computations, which treat the atmospheric boundary layer
as if it were horizontally-homogeneous, the conservation equation for the kinetic energy

k = %(W + 02+ w? ) residing in the unresolved scales of motion can be approximated

ok ou\? v\ ° g K 09 o ok
a- " [(%) - (5) ]‘M&‘”& (95)

where 6 is the mean potential temperature of the layer, (u, v) and § are the resolved

as:

components of the horizontal wind and the potential temperature, K is the eddy viscosity,
K, = K/P, is the eddy diffusivity for heat (P, is the turbulent Prandtl number), and K}
is the effective eddy diffusivity for the vertical diffusion of k.

Classify each term in this equation, and identify its conventional name — e.g. what term(s)
represent “shear production”? Making reference to the flux Richardson number
Ri_ 9 K/P, 00/0z
Y6 K (9u/02)’ + (90/02)%

explain the influence of atmospheric stratification on the energy of the unresolved motion

(you may assume P, = 1).

5. Assuming a hydrostatic atmosphere, the (vertical) vorticity equation is

B b W VuCH) +
= _(§+f)VH-UH+l%-<%J—;XVHw) (1)

where ( is the relative vorticity, vy is the horizontal wind vector and w [Pas™!] the vertical
velocity. Explain the further limitations/assumptions/substitutions and/or simplifications

that lead to the quasi-geostrophic vorticity equation

d,¢  OC ¢ ¢ ow
—==4+ U, =+V, =+ V, 8= fo—=—
gt ot T Uigy TVag, T Vel = Jog)
where 179 is the Geostrophic wind vector defined at a reference latitude ¢, fy is the Coriolis

parameter at that latitude, and 5 = (0f/0y)4, its northerly gradient.



Data

° (%, 7, /%) are unit vectors along the Cartesian coordinate directions (z,y, z), and (u, v, w) are
the corresponding Cartesian velocity components. Alternative notations for the velocity
vector are u, 4 and u;, where the dummy subscript occurring in the last of these (and
which could as easily have been written j or k or indeed any other symbol) takes on values

of 1,2 or 3 corresponding to the three spatial axes.

Ocli—l;z (%+ u-V) u:_?le—l— g— 2Qxu+ vV
The Navier-Stokes equation, expressing conservation of momentum of a Newtonian fluid:
p the fluid density, p the pressure, g the gravitational acceleration vector, {2 the angular
velocity of the coordinate frame (occurring in the Coriolis term), v the molecular kinematic
viscosity. If V| L are velocity and length scales for the motion, a Reynolds number may
be formed as R, = VL/v and molecular friction can be neglected in the limit R, —
oo. Similarly the Rossby number is R, = V/(fL) where f = 2|Q|sin¢ is the Coriolis

parameter.

de Oc Oc d%c

= —+ uj =K
dt at J (9xj 81’j8l’j

Expresses conservation of the mass of a passive, non-reactive gas in the atmosphere. The

velocity vector u = u;, and summation applies in any term with a repeated subscript, e.g.

uj Oc/0x; = @ - Ve. The molecular diffusivity of the gas in air is x. If V| L are velocity

and length scales for the motion, a Peclet number may be formed as P = VL/k
Ow __
[ ] Dp + a_p = 0

Continuity equation in the x,y,p (“isobaric”) coordinate system, where D, = Vg - Uy
is the divergence of the two velocity components lying in the constant pressure surface

(“horizontal divergence”)



